学报(中文)

单输入单输出系统离散积分滑模预测控制

展开
  • 中国石油大学(华东) 新能源学院,山东 青岛 266580
刘邱(1995-),男,重庆市人,硕士生,从事滑模控制和预测控制的研究

收稿日期: 2019-12-11

  网络出版日期: 2020-10-10

基金资助

国家自然科学基金资助项目(61973315)

Discrete-Time Integral Sliding Mode Predictive Control for Single Input Single Output Systems

Expand
  • College of New Energy, China University of Petroleum (East China),Qingdao 266580, Shandong, China

Received date: 2019-12-11

  Online published: 2020-10-10

摘要

基于离散滑模控制理论和模型预测控制理论,针对一类带有外界干扰的单输入单输出控制系统提出了一种离散时间积分滑模预测控制算法.该控制算法结合了滑模控制和预测控制的优点,利用积分滑模降低了干扰对系统的影响,保证了系统的整体鲁棒性.并且该控制算法具有预测控制不需要严格的模型形式以及对系统输出进行滚动优化的特点,从而降低了控制器对系统模型的要求,增强了其控制性能.最后通过稳定性分析以及MATLAB软件仿真验证了该控制算法的有效性.

本文引用格式

刘邱, 赵东亚 . 单输入单输出系统离散积分滑模预测控制[J]. 上海交通大学学报, 2020 , 54(9) : 898 -903 . DOI: 10.16183/j.cnki.jsjtu.2020.169

Abstract

Based on the theories of discrete-time sliding mode control and model predictive control, a discrete-time integral sliding mode predictive control algorithm is proposed for a class of single input single output (SISO) control systems with disturbance. The control algorithm proposed combines the advantages of sliding mode control and model predictive control. The integral sliding mode reduces the disturbance effect of the system, which ensures the robustness of the whole system. The design method reduces the requirement on the controller of the system model, and enhances the control performance because the control algorithm does not require strict model forms as well as the characteristics of the system output rolling optimization. The stability analysis and MATLAB software simulations verify the effectiveness of the control algorithm.

参考文献

[1] UTKIN V. Variable structure systems with sliding modes[J]. IEEE Transactions on Automatic Control, 1977,22(2):212-222.
[2] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2005.
[2] LIU Jinkun. MATLAB simulation for sliding mode control[M]. Beijing: Tsinghua University Press, 2005.
[3] SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs, NJ, USA: Prentice Hall, 1991.
[4] HUNG C P. Integral variable structure control of nonlinear system using a CMAC neural network learning approach[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2004,34(1):702-709.
[5] WANG J D, LEE T L, JUANG Y T. New methods to design an integral variable structure controller[J]. IEEE Transactions on Automatic Control, 1996,41(1):140-143.
[6] CASTANOS F, FRIDMAN L. Analysis and design of integral sliding manifolds for systems with unmatchedperturbations[J]. IEEE Transactions on Automatic Control, 2006,51(5):853-858.
[7] CAO W J, XU J X. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems[J]. IEEE Transactions on Automatic Control, 2004,49(8):1355-1360.
[8] XI Z, HESKETH T. Discrete time integral sliding mode control for systems with matched and unmatched uncertainties[J]. IET Control Theory & Applications, 2010,4(5):889-896.
[9] 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013.
[9] CHEN Hong. Model predictive control[M]. Beijing: Science Press, 2013.
[10] STEINBERGER M, CASTILLO I, HORN M, et al. Model predictive output integral sliding mode control [C]//International Workshop on Variable Structure Systems (VSS). Nanjing, China: IEEE, 2016: 228-233.
[11] ROBERTS P D. A brief overview of model predictive control[J]. Computing & Control Engineering Jouranl, 1999,10(5):186-188.
[12] 宋立忠, 陈少昌, 姚琼荟. 多输入离散时间系统滑模预测控制[J]. 电机与控制学报, 2005,9(2):128-132.
[12] SONG Lizhong, CHEN Shaochang, YAO Qionghui. Sliding mode predictive control for multi-input discrete-time systems[J]. Electric Machines and Control, 2005,9(2):128-132.
[13] 周建锁, 刘志远, 裴润. 约束非线性系统的滑模预测控制方法[J]. 控制与决策, 2001,16(2):207-210.
[13] ZHOU Jiansuo, LIU Zhiyuan, PEI Run. Sliding mode predictive control scheme for constrained nonlinear systems[J]. Control and Decision, 2001,16(2):207-210.
文章导航

/