学报(中文)

阻流板对双桨船阻力和伴流场影响数值研究

展开
  • 哈尔滨工程大学 船舶工程学院, 哈尔滨 150001
宋科委,(1991-),男,山东省菏泽市人,博士生,主要从事船舶推进与节能研究.

网络出版日期: 2019-09-10

基金资助

国家自然科学基金(51379043, 51209048, 51409063),高技术船舶科研项目工信部联装[2016]26号

Numerical Study on the Effect of Interceptors on the Resistance and Wake Field of Twin-Screw Ship

Expand
  • College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Online published: 2019-09-10

摘要

基于RANS(Reynolds-averaged Navier-Stokes)方法针对安装了3种不同深度阻流板的DTMB5415船模进行数值计算,以研究阻流板对船舶阻力以及伴流场的影响.分析了安装阻流板前后的船舶水动力性能,并探讨了船艉波形、船身压力以及轴向标称伴流场的变化.研究结果表明:阻流板的安装能够降低DTMB5415的阻力,平均减阻率可达 4.19%;船体虚长度的增加以及方尾船尾流场的改善是船模总阻力降低的主要原因;阻流板的安装增大了船舶尾部的边界层厚度以及轴向标称伴流,当弗劳德数Fr=0.35 时,d/LPP=0.0015(d为阻流根深度,LPP为船长)的桨盘面平均伴流分数增大了 11.9%.

本文引用格式

宋科委,郭春雨,龚杰,李平,王伟 . 阻流板对双桨船阻力和伴流场影响数值研究[J]. 上海交通大学学报, 2019 , 53(8) : 957 -964 . DOI: 10.16183/j.cnki.jsjtu.2019.08.010

Abstract

Numerical calculation of DTMB5415 ship model with three different depth interceptors were carried out based on RANS(Reynolds-averaged Navier-Stokes) method in order to study the influence of interceptors on the ship resistance and wake field. The hydrodynamic performance of the ship with and without interceptor was analyzed in detail. Meanwhile, the variation of stern waveform, the hull pressure and the axial flow field were discussed. The results shown that the installation of interceptor could reduce the resistance of DTMB5415, and the average drag reduction rate could reach 4.19%. The increase of the virtual length of the hull and the improvement of the tail flow field of the transom stern ship reduced the wave making resistance, which was the main reason for the decrease of the total resistance. The existence of interceptor increased the boundary layer thickness at the ship stern and the axial nominal wake, meanwhile, the average wake fraction at the propeller disk increased by 11.9% when Fr=0.35 and d/LPP=0.0015, where Fr is Froude rumber, d is the depth of the spoiler and LPP is the length of the ship.

参考文献

[1]AMACHER R, LIECHTI T C, PFISTER M, et al. Wave-reducing stern flap on ship convoys to protect riverbanks[J]. Naval Engineers Journal, 2015, 127(1): 95-102. [2]蒋一, 孙寒冰, 邹劲, 等. 变角度尾压浪板对断级滑行艇阻力性能的影响[J]. 上海交通大学学报, 2017, 51(3): 320-325. JIANG Yi, SUN Hanbing, ZOU Jin, et al. Influence of angle-variable stern flap on resistance performance of stepped planing hull[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 320-325. [3]KIM D H, SEO I D, RHEE K P, et al. A model test study on the effect of the stern interceptor for the reduction of the resistance and trim angle for wave-piercing hulls[J]. Journal of the Society of Naval Architects of Korea, 2015, 52(6): 485-493. [4]KARAFIATH G. The effect of stern wedges on ship powering performance[J]. Naval Engineers Journal, 1987, 99(3): 27-38. [5]邓锐, 黄德波, 周广利, 等. 阻流板水动力机理的初步计算研究[J]. 船舶力学, 2012, 16(7): 740-749. DENG Rui, HUANG Debo, ZHOU Guangli, et al. Preliminary numerical research of the hydrodynamic mechanism of interceptor[J]. Journal of Ship Mechanics, 2012, 16(7): 740-749. [6]MANSOORI M, FERNANDES A C. Hydrodyna-mics of the interceptor on a 2-D flat plate by CFD and experiments[J]. Journal of Hydrodynamics, 2015, 27(6): 919-933. [7]GHASSEMI H, MANSOURI M, ZAFERANLOUEI S. Interceptor hydrodynamic analysis for handling trim control problems in the high-speed crafts[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(11): 2597-2618. [8]MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40-51. [9]MANSOORI M, FERNANDES A C. Interceptor and trim tab combination to prevent interceptor’s unfit effects[J]. Ocean Engineering, 2017, 134: 140-156. [10]黄胜, 单铁兵. 附体对船尾伴流场的影响研究[J]. 哈尔滨工程大学学报, 2008, 29(11): 1147-1153. HUANG Sheng, SHAN Tiebing. The effects of appendages on ship’s wakes[J]. Journal of Harbin Engineering University, 2008, 29(11): 1147-1153. [11]王展智, 熊鹰, 刘志华, 等. 双臂轴支架的剖面形状和安装角度对船舶伴流场的影响[J]. 中国舰船研究, 2012, 07(4): 23-29. WANG Zhanzhi, XIONG Ying, LIU Zhihua, et al. Effects of twin shaft bracket section profile and installation angle on nominal wake field [J]. Chinese Journal of Ship Research, 2012, 07(4): 23-29. [12]王展智, 熊鹰, 孙海涛, 等. 双桨船附体阻力尺度效应[J]. 上海交通大学学报, 2015, 49(2): 255-261. WANG Zhanzhi, XIONG Ying, SUN Haitao, et al. Scale effect of appendage resistance of twin-screw ship[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 255-261. [13]OLIVIERI A, PISTANI F, AVANZINI A, et al. Towing tank experiments of resistance, sinkage and trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model[D]. Iowa City: The University of Iowa, 2001. [14]GUI L, LONGO J, STERN F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512[J]. Experiments in Fluids, 2001, 31(3): 336-346. [15]MANSOORI M, FERNANDES A C. Hydrodynamics of the interceptor analysis via both ultra-reduced model test and dynamic CFD simulation[J]. Journal of Offshore Mechanics & Arctic Engineering, 2017, 139(2): 0211101. [16]REICHARDT. Vollstndige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen[J]. Zamm-Journal of Applied Mathematics & Mechanics, 1951, 31(7): 208-219. [17]LARSSON L, STERN F, VISONNEAU M. CFD in ship hydrodynamics—Results of the Gothenburg 2010 workshop[C]//MARINE 2011, IV International Conference on Computational Methods in Marine Engineering. Dordrecht: Springer, 2013: 237-259.
文章导航

/