学报(中文)

一种几何VOF方法在液舱晃荡流动模拟中的应用

展开
  • 上海交通大学 海洋工程国家重点实验室; 高新船舶与深海开发装备协同创新中心, 上海 200240
李金龙(1988-),男,江苏省扬州市人,博士生,研究方向为两相流.

网络出版日期: 2019-09-10

基金资助

国家自然科学基金资助项目(11802176,11372184),国家重点基础研究发展规划(973)项目(2015CB251203)

Application of a Geometric VOF Method in the Simulations of Sloshing Flow

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-09-10

摘要

isoAdvector 是一种新的几何 VOF (Volume of Fluid)方法,虽然克服了传统几何 VOF 方法难以适用于三维空间任意多面体网格的缺点,但不能直接用来模拟涉及动网格技术的液舱晃荡.为此,引入了运动通量修正,并提出了面-界面交线运动修正,使得修正后的 isoAdvector 方法可以应用到液舱晃荡的模拟中.基于不同的 VOF 方法对非共振、共振受迫晃荡和单次冲击波面进行数值模拟,并将模拟结果与试验结果以及解析解进行了比较.结果表明:相对于代数 VOF 方法,采用修正后的 isoAdvector 方法获得的自由液面位置和整体水动力载荷精度更高;捕捉的波面没有褶皱,能够较好地模拟波面的翻卷和破碎.此外,提出了界面厚度的估计方法,分析了自由液面波高精度提高的原因.

本文引用格式

李金龙,尤云祥,陈科 . 一种几何VOF方法在液舱晃荡流动模拟中的应用[J]. 上海交通大学学报, 2019 , 53(8) : 943 -951 . DOI: 10.16183/j.cnki.jsjtu.2019.08.008

Abstract

The isoAdvector method is a new geometric volume of fluid (VOF) method. It overcomes the difficulties that the traditional geometric VOF methods cannot be applied on arbitrary polyhedral meshes. However, the isoAdvector method cannot be directly applied to sloshing simulations which involve the dynamic mesh technique. Thus, the motion flux correction is introduced, and the velocity correction for face-interface intersection line is proposed. The modified isoAdvector method can then be applied to the sloshing simulations. The non-resonant and the resonant sloshing under forced excitations and the single impace wave are simulated based on different VOF methods, and the results are compared with the experiments and the analytical solution. It demonstrates that the modified isoAdvector method can provide more accurate positions of the free surface and the hydrodynamic loads than the algebraic VOF method. In addition, the wave overturning and breaking can be predicted well without the wrinkles on the wave surface by using the modified isoAdvector method. A new approach for evaluating the interface thickness is proposed to analyze the reason for the improvement of the accuracy of free-surface elevations.

参考文献

[1]洪亮, 朱仁传, 缪国平, 等. 波浪中船体与液舱晃荡耦合运动的时域数值计算[J]. 哈尔滨工程大学学报, 2012, 33(5): 635-641. HONG Liang, ZHU Renchuan, MIAO Guoping, et al. Numerical calculations of ship motions coupled with tank sloshing in time domain based on potential flow theory [J]. Journal of Harbin Engineering University, 2012, 33(5): 635-641. [2]ROENBY J, BREDMOSE H, JASAK H. A computational method for sharp interface advection[J]. Royal Society Open Science, 2016, 3(11): 160405. [3]JOFRE L, LEHMKUHL O, CASTRO J, et al. A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes[J]. Computers & Fluids, 2014, 94: 14-29. [4]MCKEE S, TOM M F, FERREIRA V G, et al. The MAC method[J]. Computers & Fluids, 2008, 37(8): 907-930. [5]TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. [6]LUO H, BAUM J D, LHNER R. On the computation of multi-material flows using ALE formulation[J]. Journal of Computational Physics, 2004, 194(1): 304-328. [7]CHERN M J, VAZIRI N, SYAMSURI S, et al. Pseudospectral solution of three-dimensional nonli-near sloshing in a shallow water rectangular tank[J]. Journal of Fluids and Structures, 2012, 35: 160-184. [8]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. [9]NOH W F, WOODWARD P. SLIC (Simple Line Interface Calculation)[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid. Enschede, Netherlands: Springer, 1976: 330-340. [10]RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2): 112-152. [11]LIU D M, LIN P Z. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal of Computational Physics, 2008, 227(8): 3921-3939. [12]XUE M A, LIN P Z. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. [13]BERBEROVI E, VAN HINSBERG N P, JAKIRLI S, et al. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution[J]. Physical Review E, 2009, 79(3): 036306. [14]ALBADAWI A, DONOGHUE D B, ROBINSON A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28. [15]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. [16]SOUTO-IGLESIAS A, BULIAN G, BOTIA-VERA E. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105: 136-159. [17]DEVOLDER B, RAUWOENS P, TROCH P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM [J]. Coastal Engineering, 2017, 125: 81-94. [18]FALTINSEN O M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow[J]. Journal of Ship Research, 1978, 22(3): 193-202. [19]FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes[J]. Journal of Fluid Mechanics, 2005, 523: 199-218. [20]KARIMI M R, BROSSET L, GHIDAGLIA J M, et al. Effect of ullage gas on sloshing. Part II: Local effects of gas-liquid density ratio[J]. European Journal of Mechanics B/Fluids, 2016, 57: 82-100.
文章导航

/