学报(中文)

云制造平台下订单可分解的协同生产计划模型及求解

展开
  • 武汉科技大学 a. 管理学院; b. 服务科学与工程研究中心, 武汉 430065
王静(1980-),女,湖北省黄石市人,博士,主要研究方向为智能制造、生产管理、决策支持系统研究.

基金资助

国家自然科学基金资助项目(71701156),湖北省软科学研究资助项目(2017ADC108),湖北服务科学与工程研究中心开放基金资助项目(CSSE2017GB02)

The Model and Solution for Collaborative Production Planning with Order Splitting in Cloud Manufacturing Platform

Expand
  • a. School of Management; b. Center for Service Science and Engineering, Wuhan University of Science and Technology, Wuhan 430065, China

摘要

针对云平台下多订单在多企业多时段的协同生产计划问题,引入订单拆分数和订单最小分解率这两个调节变量,在考虑生产时间窗和生产能力等约束下建立协同生产计划模型.同时,设计双层编码,并运用自适应模拟退火遗传算法在不同数据规模下对模型进行求解,求解结果与商用优化软件CPLEX进行比较.最后对模型中的关键参数进行了灵敏度分析,实验结果为云制造平台运营决策者提供决策依据.

本文引用格式

王静a,b,潘开灵a,刘翱a,b,王鑫鑫a . 云制造平台下订单可分解的协同生产计划模型及求解[J]. 上海交通大学学报, 2018 , 52(12) : 1655 -1662 . DOI: 10.16183/j.cnki.jsjtu.2018.12.016

Abstract

In cloud manufacturing platform, a multi-plants and multi-periods collaborative production problem was discussed by introducing two adjustive variables, which are the maximal number of enterprises that process an order and the minimal order splitting ratio, respectively. We established a collaborative production planning model with constrains of production time window and production capacity. Then, a self-adaptive simulated annealing genetic algorithm using bi-level code was designed. Our proposed approach was compared with a commercial optimization software CPLEX under different data sizes in numerical simulation. Lastly, the sensitivity analysis of the major parameters in the model was carried on. The experimental results provide a decision-making basis for operation decision makers of cloud manufacturing platform.

参考文献

[1]ZHANG L, LUO Y L, TAO F, et al. Cloud manufacturing: A new manufacturing paradigm[J]. Enterprise Information Systems, 2014, 8(2): 167-187. [2]CAO Y, WANG S L, KANG L, et al. A TQCS-based service selection and scheduling strategy in cloud manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2016, 82: 235-251. [3]ZHANG M, LI C Q, SHANG Y L, et al. Research on resource service matching in cloud manufacturing[J]. Manufacturing Letters, 2018, 15: 50-54. [4]FISHER O, WATSON N, PORCU L, et al. Cloud manufacturing as a sustainable process manufacturing route[J]. Journal of Manufacturing Systems, 2018, 47: 53-68. [5]周金宏, 汪定伟. 软计算求解分布式多工厂单件制造业的提前/拖期生产计划问题[J]. 控制理论与应用, 2002, 19(2): 235-238. ZHOU Jinhong, WANG Dingwei. Soft computing for earliness and tardiness production planning of multi-location OKP manufacturing systems[J]. Control Theory & Applications, 2002, 19(2): 235-238. [6]KARIMI N, DAVOUDPOUR H. A branch and bound method for solving multi-factory supply chain scheduling with batch delivery [J]. Expert Systems with Applications, 2015, 42: 238-245. [7]王文浩, 张洁. 面向ATP的多工厂订单决策与生产计划集成优化模型[J]. 上海交通大学学报, 2011, 45(12): 1794-1799. WANG Wenhao, ZHANG Jie. An order decision and production planning integrated available-to-promise model for multi-plant manufacturing[J]. Journal of Shanghai Jiao Tong University, 2011, 45(12): 1794-1799. [8]PAN T Y, ZHANG Z H, CAO H. Collaborative production planning with production time windows and order splitting in make-to-order manufacturing[J]. Computer & Industrial Engineering, 2014, 67: 1-9. [9]LU Y Q, XU X. Process and production planning in a cloud manufacturing environment[C]∥Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte, USA: MSEC, 2015: 9382. [10]王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755. WANG Zhanzhong, ZHAO Liying, CAO Ningbo, et al. Hazardous material transportation scheduling model based on multilayer coding genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 751-755. [11]BRAHIMI N, DAUZERE-PERES S, WOLSEY L A. Polyhedral and Lagrangian approaches for lot sizing with production time windows and setup times[J]. Computers & Operations Research, 2010, 37(1): 182-188.
Options
文章导航

/