学报(中文)

数据驱动的滚动轴承性能衰退状态监测方法

展开
  • 华中科技大学 a. 船舶与海洋工程学院; b. 高新船舶与深海开发装备协同创新中心; c. 制造装备数字化国家工程中心, 武汉 430074

网络出版日期: 2018-05-28

基金资助

国家自然科学基金项目(51475189),国际科技合作内地与澳门联合项目(S2016G1012),中央高校基本科研业务费专项资金项目(2016YXMS050),甲板机械质量品牌专项经费资助项目

Data-Driven Performance Degradation Condition Monitoring for Rolling Bearings

Expand
  • a. School of Naval Architecture and Ocean Engineering; b. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration; c. National Engineering Research Center of Digital Manufacturing Equipment, Huazhong University of Science and Technology, Wuhan 430074, China

Online published: 2018-05-28

摘要

针对滚动轴承性能衰退状态监测中的故障信号微弱和故障模式多样性等问题,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)以及主成分分析(PCA)的滚动轴承性能衰退状态监测方法.针对经过预处理后的滚动轴承原始振动信号,分别采用CEEMDAN方法以及Hilbert-Huang变换提取本征模能量特征和故障特征;综合运用斯皮尔曼等级相关系数和PCA进行特征融合,以获得表征滚动轴承性能衰退状态的健康指数;通过对健康指数的单调性、稳健性和衰退性等进行分析,并经过加权平均来识别滚动轴承性能衰退状态.实例分析结果表明,所提出的方法能够较为准确地识别滚动轴承性能衰退状态.

本文引用格式

吴军a, b,黎国强a,吴超勇a,程一伟c,邓超c . 数据驱动的滚动轴承性能衰退状态监测方法[J]. 上海交通大学学报, 2018 , 52(5) : 538 -544 . DOI: 10.16183/j.cnki.jsjtu.2018.05.006

Abstract

A degradation condition monitoring method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and principal component analysis (PCA) for rolling bearings is proposed, which considers the problems of weak fault signals and diverse fault modes. In this paper, intrinsic energy features and failure frequency features are respectively extracted from the preprocessed original vibration signals of rolling bearings using CEEMDAN algorithm and Hilbert-Huang transform. Then, a health index of the rolling bearings is obtained through the feature fusion using spearman rank correlation coefficient and PCA. Finally, the degradation condition of the rolling bearings is identified by the analysis of the monotonicity, robustness and correlation of the health index. The conclusion is drawn by a case study that the proposed method can be applied to accurately and timely identifying the degradation condition of the rolling bearings.

参考文献

[1]何正嘉, 曹宏瑞, 訾艳阳, 等. 机械设备运行可靠性评估的发展与思考[J]. 机械工程学报, 2014, 50(2): 171-186. HE Zhengjia, CAO Hongrui, ZI Yanyang, et al. Developments and thoughts on operational reliability assessment of mechanical equipment[J]. Journal of Mechanical Engineering, 2014, 50(2): 171-186. [2]MURUGANATHAM B, SANJTH M A, KRISHNAKUMAR B, et al. Roller element bearing fault diagnosis using singular spectrum analysis[J]. Mechanical System & Signal Processing, 2013, 35(1/2): 150-166. [3]KANKAR P K, SHARMA S C, HARSHA S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform[J]. Neurocomputing, 2013, 110(8): 9-17. [4]孟宗, 胡猛, 谷伟明, 等. 基于LMD多尺度熵和概率神经的滚动轴承故障诊断方法[J].中国机械工程, 2016, 27(4): 433-436. MENG Zong, HU Meng, GU Weiming, et al. Rolling bearing fault diagnosis method based on LMD multi-scale entropy and probabilistic neural network[J]. Journal of Mechanical Engineering, 2016, 27 (4): 433-436. [5]ZHANG X Y, ZHOU J Z. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 127-140. [6]KIM H E, TAN A C C, MATHEW J, et al. Bearing fault prognosis based on health state probability estimation[J]. Expert Systems with Applications, 2012, 39(5): 5200-5213. [7]WANG Y H, DENG C, WU J, et al. Failure time prediction for mechanical device based on the degradation sequence[J]. Journal of Intelligent Manufacturing, 2015, 26(6): 1181-1199. [8]张梅军, 唐建, 何晓晖. EEMD方法及在机械故障诊断中的应用[M]. 北京: 国防工业出版社, 2015. ZHANG Meijun, TANG Jian, HE Xiaohui. EEMD method and its application in mechanical fault diagnosis[M]. Beijing: National Defense Industry Press, 2015. [9]SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation & Mea-surement, 2014, 64(1): 52-62. [10]WANG Y H, DENG C, WU J, et al. A corrective maintenance scheme for engineering equipment[J]. Engineering Failure Analysis, 2014, 36: 269-283. [11]CHENG Q, ZHAO H W, ZHANG G J, et al. An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(1/2/3/4): 107-121. [12]WU J, WU C Y, LV Y Q, DENG C, SHAO X Y. Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA[J]. Industrial Management & Data Systems, 2017, 117(4): 713-728. [13]JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Enabling health monitoring approach based on vibration data for accurate prognostics[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 647-656. [14]PATRICK N, RAFAEL G, KAMAL M, et al. PRONOSTIA: An experimental platform for bearings accelerated life test[C]∥International Conference on Prognostics and Health Management. Denver, USA: IEEE, 2012. [15]SINGLETON R K, STRANGAS E G, AVIYENTE S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1781-1790. [16]CARINO J A, ZURITA D, DELGADO M, et al. Remaining useful life estimation of ball bearings by means of monotonic score calibration[C]∥International Conference on Industrial Technology. Seville, Spain: IEEE, 2015: 1752-1758.
Options
文章导航

/