兵器工业

 类Exechon并联模块弹性静力学建模与分析

展开
  •  1. 安徽工业大学 机械工程学院, 安徽 马鞍山 243032;
    2. 福州大学 机械工程及自动化学院, 福州 350116

网络出版日期: 2017-08-30

基金资助

 

 Kinetostatic Modeling and Analysis of
 an ExeVariant Parallel Kinematic Machine

Expand
  •  1. School of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243032, Anhui, China;
     2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China

Online published: 2017-08-30

Supported by

 

摘要

 针对Exechon并联模块动平台摆角范围较小的问题,提出了一种拓扑构型为2RPU&1RPS的类Exechon并联模块.在前期完成的概念设计基础上,对类Exechon并联模块进行了自由度计算及运动学逆解分析.采用子结构综合法,建立了计及关节弹性变形和支链体柔性的类Exechon并联模块弹性静力学模型.依托所建模型,计算了该类并联模块极限位姿下动平台的弹性位移和关节约束反力(力矩),并进一步给出了两者在工作空间内的映射.研究表明,模块自重对类Exechon并联模块动平台的弹性位移和关节约束反力(力矩)具有重要影响,其静力学特性在工作空间内随位姿变化明显,且在沿z向的工作截面上呈对称性映射.

本文引用格式

汤腾飞1,张俊2,赵艳芹1 .  类Exechon并联模块弹性静力学建模与分析[J]. 上海交通大学学报, 2017 , 51(8) : 992 -999 . DOI: 10.16183/j.cnki.jsjtu.2017.08.014

Abstract

 A novel Exevariant PKM with a topological arrangement of 2RPU&1RPS was proposed by the authors to achieve a better platform rotational ability over the Exechon parallel kinematic machine (PKM). After introducing the concept design, the mobility analysis and inverse kinematics of the proposed Exevariant PKM are conducted. With the substructure synthesis techniques, a kinetostatic model that includes joint deflections and limb flexibilites is developed to investigate the kinetostatic characteristics of the Exevariant PKM. The platform’s elastic displacements and joint reaction forces/moments of the Exevariant PKM at the extreme position are analyzed. Furthermore, their mappings over any work plane are evaluated throughout the entire workspace. The results reveal that the gravitycaused elastic displacements of the platform and joint force/moment reactions are noticeable. The mappings of platform’s elastic displacements and joint forces/moments reactions in the entire workspace are positiondependant and demonstrate a symmetry over any given work plane.

参考文献

 [1]CUANUrquizo E, RODRIGUEZLeal E. Kinematic analysis of the 3CUP parallel mechanism[J]. Robotics and ComputerIntegrated Manufacturing, 2013, 29(5): 382395.
[2]XIE F, LIU X J, LI T. Type synthesis and typical application of 1T2Rtype parallel robotic mechanisms[J]. Mathematical Problems in Engineering, 2013 (9): 497504.
[3]ZHANG D, GOSSELIN C M. Kinetostatic analysis and design optimization of the tricept machine tool family[J]. Journal of Manufacturing Science and Engineering, 2002, 124(3): 725733.
[4]HENNES N. Ecospeedan innovative machinery concept for high performance 5axis machining of large structural components in aircraft engineering[C]//3rd Chemnitz Parallel Kinematic Seminar. Zwickau: Verlag Wissenschaftliche Scripten, 2002: 763774.
[5]LI Y G, LIU H T, ZHAO X M, et al. Design of a 3DOF PKM module for large structural component machining[J]. Mechanism and Machine Theory, 2010, 45(6): 941954.
[6]NEUMANN K E. Exechon concept[J]. Parallel Kinematic Machines in Research and Practice, 2006, 33: 787802.
[7]李彬, 黄田, 刘海涛, 等. Exechon 混联机器人的三自由度并联机构模块位置分析[J]. 中国机械工程, 2010 (23): 27852789.
LI Bin, HUANG Tian, LIU Haitao, et al. Position analysis of a 3DOF PKM module for a 5DOF hybrid robot Exechon[J]. Chinese Journal of Mechanical Engineering, 2010 (23): 27852789.
[8]ZHANG J, ZHAO Y Q, JIN Y. Kinetostaticmodelbased stiffness analysis of Exechon PKM[J]. Robotics and ComputerIntegrated Manufacturing, 2015, 37(C): 208220
[9]ZHANG J, ZHAO Y Q, JIN Y. Elastodynamic Modeling and analysis for an Exechon parallel kinematic machine[J]. Journal of Manufacturing Science and Engineering, 2016, 138(3): 031011.
[10]BI Z M, KANG B. An inverse dynamic model of overconstrained parallel kinematic machine based on NewtonEuler formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(4): 041001.
[11]BI Z M, JIN Y. Kinematic modeling of Exechon parallel kinematic machine[J]. Robotics and ComputerIntegrated Manufacturing, 2011, 27(1): 186193.
[12]TANG T F, ZHAO Y Q, ZHANG J, et al. Conceptual design and workspace analysis of an Exechoninspired parallel kinematic machine[C]//Advances in Reconfigurable Mechanisms and Robots II. Switzerland: Springer International Publishing, 2016: 445453.
[13]付红栓, 赵恒华, 杨辉. 3TPT型并联机床静力学及刚度研究[J]. 组合机床与自动化加工技术, 2013(1): 4244.
FU Hongshuan, ZHAO Henghua, YANG Hui. Study on the statics and stiffness of 3TPT parallel machine tool[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(1): 4244.
[14]PIRAS G, CLEGHORN W L, MILLS J K. Dynamic finiteelement analysis of a planar highspeed, highprecision parallel manipulator with flexible links[J]. Mechanism & Machine Theory, 2005, 40(7):849862.
[15]KLIMCHIK A, CHABLAT D, PASHKEVICH A. Stiffness modeling for perfect and nonperfect parallel manipulators under internal and external loadings[J]. Mechanism and Machine Theory, 2014, 79: 128.
[16]落海伟, 张俊, 王辉, 等. 3RPS并联机构静刚度建模方法[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(09): 797803.
LUO Haiwei, ZHANG Jun, WANG Hui, et al. Static stiffness modeling method of 3RPS PKM[J]. Journal of Tianjin University (Science and Technology), 2015, 48(09): 797803.
[17]黄真. 高等空间机构学[M]. 北京:高等教育出版社, 2006.
[18]MAJOU F, GOSSELIN C, WENGER P, et al. Parametric stiffness analysis of the Orthoglide[J]. Mechanism and Machine Theory, 2007, 42(3): 296311.
Options
文章导航

/