针对目前结冰环境的粒径演化研究仍基于常温水滴碰撞结果与实际过冷情况差别大的问题,设计实验研究了常温与过冷水滴碰撞行为的差别:通过水滴发生器产生两水滴链并以一定角度碰撞,其过程通过高速相机记录.实验中水滴的碰撞韦伯数范围为0~100,温度范围为25~-5℃.结果发现,随着温度的降低,水滴碰撞结果发生明显的改变:① 合并区域向分离区域扩展;② 反射分离区域向高韦伯数方向移动;③ 拉伸分离区域向高碰撞参数方向移动.分析显示水滴的表面张力和黏性变化是导致该结果的主要原因.这说明过冷水雾碰撞演化将导致粒径明显大于以常温水滴碰撞模型预测的结果.
The prediction of droplet size distribution is always based on water droplet collision outcome at room temperature, which has a great difference with that in freezing environment. Because of this, the outcome of binary water droplet collisions was investigated experimentally within a certain temperature range. Two monodisperse droplet chains were produced by means of piezoelectric droplet generators and two high speedcameras were used to observe the collision process. Values of the Weber number based on the small droplet sizes are from 0 to 100. Droplet temperature varies from 25℃ to -5℃. Compared with the outcome at room temperature, the result of the supercooled water droplet collision has obviously changed. ① The coalescence region extends to the separation region. ② The reflexive separation region move towards the region with high Weber number value. ③ The stretching separation region is slightly shifted downward. From the perspective of the supercooled water properties, the influence of temperature on collision results was discussed. The droplet size distribution of supercooled spray has a great difference with the result based on water droplet collision at room temperature.
[1]VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥4th AIAA Atmospheric and Space Environments Conference. New Orleans: AIAA, 2012: 2933.
[2]THOMPSON G, POLITOVICH M. A numerical weather model’s ability to predict aircraft and ground icing environments[C]∥6th AIAA Atmospheric and Space Environments Conference. Atlanta: AIAA, 2014: 2066.
[3]KOLLR L E, FARZANEH M, KAREV A R. The role of droplet collision, evaporation and gravitational settling in the modeling of twophase flows under icing conditions[C]∥Proceeding of 11th International Workshop on Atmospheric Icing of Structures. Montréal: IWAIS XI, 2005.
[4]BORD S R, HAGEMEIER T, THVENIN D. Experimental investigation of dropletdroplet interactions[C]∥23rd European Conference on Liquid Atomization and Spray Systems. Berlin: Freie Universitt, 2010: 198.1198.6.
[5]Department of Transportation, Federal Aviation Administration. Federal register: Part III[R]. Washington: Federal Aviation Administration, 2014.
[6]BRAZIERSMITH P R, JENNINGS S G, LATHAM J. The interaction of falling water drops: Coalescence[C]∥Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 1972: 393408.
[7]GOTAAS C, HAVELKA P, JAKOBSEN H A, et al. Effect of viscosity on dropletdroplet collision outcome: Experimental study and numerical comparison[J]. Physics of Fluids, 2007, 19(10): 102106.
[8]ASHGRIZ N, POO J Y. Coalescence and separation in binary collisions of liquid drops[J]. Journal of Fluid Mechanics, 1990, 221: 183204.
[9]ESTRADE J P, CARENTZ H, LAVERGNE G, et al. Experimental investigation of dynamic binary collision of ethanol droplets—A model for droplet coalescence and bouncing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 486491.
[10]BRENN G, VALKOVSKA D, DANOV K D. The formation of satellite droplets by unstable binary drop collisions[J]. Physics of Fluids, 2001, 13(9): 24632477.
[11]O’ROURKE P J, BRACCO F V. Modeling of drop interactions in thick sprays and a comparison with experiments[J]. Proceedings of the Institution of Mechanical Engineers, 1980, 9: 101106.
[12]KO G H, RYOU H S. Droplet collision processes in an interspray impingement system[J]. Journal of Aerosol Science, 2005, 36(11): 13001321.
[13]BUTTERSACK T, BAUERECKER S. Critical radius of supercooled water droplets: On the transition toward dendritic freezing[J]. The Journal of Physical Chemistry B, 2016, 120(3): 504512.
[14]JIANG Y J, UMEMURA A, LAW C K. An experimental investigation on the collision behaviour of hydrocarbon droplets[J]. Journal of Fluid Mechanics, 1992, 234: 171190.
[15]YI N, HUANG B, DONG L, et al. Temperatureinduced coalescence of colliding binary droplets on superhydrophobic surface[J]. Scientific Reports, 2014, 4: 4303.
[16]QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331: 5980.
[17]RABE C, MALET J, FEUILLEBOIS F. Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number[J]. Physics of Fluids, 2010, 22(4): 047101.
[18]KUSCHEL M, SOMMERFELD M. Investigation of droplet collisions for solutions with different solids content[J]. Experiments in Fluids, 2013, 54(2): 117.
[19]HALLETT J. The temperature dependence of the viscosity of supercooled water[J]. Proceedings of the Physical Society, 1963, 82(6): 1046.
[20]VARGAFTIK N B, VOLKOV B N, VOLJAK L D. International tables of the surface tension of water[J]. Journal of Physical and Chemical Reference Data, 1983, 12(3): 817820.
[21]PLANCHETTE C, LORENCEAU E, BRENN G. The onset of fragmentation in binary liquid drop collisions[J]. Journal of Fluid Mechanics, 2012, 702: 525.