兵器工业

 工作于室温温区的热力学排气模拟与增压测试

展开
  •  1. 上海交通大学 制冷与低温工程研究所, 上海 200240;
    2. 上海宇航系统工程研究所, 上海 201108; 3. 航天低温推进剂技术国家重点实验室, 北京 100028

网络出版日期: 2017-08-30

基金资助

 

Simulation of a Thermodynamic Vent System Working at
 Room Temperature and Its Preliminary Pressurization Testing 

Expand
  •  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240,
    China; 2. Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China;
    3. State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China

Online published: 2017-08-30

Supported by

 

摘要

 为了揭示热力学排气系统的基本运行规律和为相关仿真程序的开发提供校核数据,设计和研制了一套工作于室温温区的热力学排气系统模拟装置.该装置安装于直径为450mm、体积约为0.11m3的椭圆封头圆筒形贮箱内,以制冷剂R141b为工质,选取具有代表性的充灌率和罐体热负荷,分别进行了喷射棒单独作用及喷射棒与节流阀、换热器共同作用下的贮箱压力控制实验,获得了相应工况下的压力控制特性.实验结果表明,当贮箱表压控制带下限设定为80kPa,上限设定为90kPa时,在单单依靠喷射棒的喷射混合消除热分层工作模式下,该系统运行超过0.98h后已无法维持压力在设定值以下;而在喷射棒和节流阀、换热器双重作用下,该系统可长期持续工作,2h内制冷剂R141b损失仅约5% (3.35kg),验证了该套系统可以胜任热力学排气过程的模拟.

本文引用格式

陈忠灿1,李鹏2,孙培杰2,王天祥3,李晓慈1,黄永华1 .  工作于室温温区的热力学排气模拟与增压测试[J]. 上海交通大学学报, 2017 , 51(8) : 946 -953 . DOI: 10.16183/j.cnki.jsjtu.2017.08.008

Abstract

 A thermodynamic vent system with refrigerant R141b as working substance has been established for the purpose of revealing the primary principle and validating a modeling program. The experimental TVS was installed within a tank with a 450mm inner diameter cylinder and two  under development elliptical domes, and has a total volume of 0.11m3 approximately. Tests of pressure control under the action of spray bar alone and the joint action of spray bar, throttle valve and heat exchanger were conducted with representative input heat and fill level. The results showed that the experimental system could successfully control the ullage gauge pressure between 80 and 90kPa for 0.98 hour by operating the spray bar alone, while in the combined operation mode only 5.8% (3.35kg) of R141b was vented in 2 hours. The ability of this system for simulating the thermodynamic vent process of evaporative fluids was validated.

参考文献

 [1]CHATO D J.  Cryogenic technology development for exploration missions[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007.
[2]HASAN M M, LIN C S, VAN DRESAR N T. Selfpressurization of a flight weight liquid hydrogen storage tank subjected to low heat flux[R].  Ohio:NASA/TM, 1991.
[3]VAN DRESAR N T, HASAN M M, LIN C S. Selfpressurization of a flight weight liquid hydrogen tank: Effects of fill level at low wall heat flux[R]. Ohio:NASA/TM, 1991.
[4]TIBOR L, CHARLES W. ZeroG thermodynamic venting system final report[R]. California:Rockwell Aerospace,1994.
[5]HASTINGS L J, TUCKER S P, FLACHBART R H, et al. Marshall space flight center inspace cryogenic fluid management program overview[C]∥41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson: AIAA, 2005.
[6]VAN OVERBEKE T J. Thermodynamic vent system test in a low earth orbit simulation[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale: AIAA, 2004.
[7]HURLBERT E A, ROMIG K A, JIMENEZ R, et al. Thermodynamic vent system for an onorbit cryogenic reaction control engine[R].  Houston: NASA Tech Briefs, 2012.
[8]CHIN S L, VAN DRESAR N T, HASAN M M. Pressure control analysis of cryogenic storage systems[J]. Journal of Propulsion and Power, 2004, 20(3): 480485.
[9]HEDAYAT A, BAILEY J W, HASTINGS L J, et al. Test data analysis of a spray bar zeroG liquid hydrogen vent system for upper stages[J]. Advances in Cryogenic Engineering, 2004, 49:11711178.
[10]FLACHBART R H, HASTINGS L J, MARTIN J J. Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]∥35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles: AIAA, 1999.
[11]HASTINGS L J, FLACHBART R H, MARTIN J J, et al. Spray bar zerogravity vent system for onorbit liquid hydrogen[R]. Alabama:NASA/TM, 2003.
[12]FLACHBART R H, HASTINGS L J, HEDAYAT A, et al.  Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2008, 48(5/6): 217222.
[13]HASTINGS L J, BOLSHINSKIY L G, HEDAYAT A, et al. Liquid methane testing with a largescale spray bar thermodynamic vent system[R].  Washington: NASA/TP, 2014.
[14]朱洪来, 孙沂昆, 张阿莉, 等. 低温推进剂在轨贮存与管理技术研究[J]. 载人航天, 2015, 21(1): 1318.
ZHU Honglai, SUN Yikun, ZHANG Ali, et al. Research on onorbit storage and management technology of crogenic propellant[J]. Manned Spaceflight, 2015, 21(1): 1318.
[15]张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3): 125131.
ZHANG Tianping. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogenics, 2006, 12(3): 125131.
[16]颜露, 黄永华, 吴静怡, 等. 低温推进剂在轨储存热力学排气系统TVS研究进展[J]. 低温与超导,2015, 43(2): 513.
YAN Lu, HUANG Yonghua, WU Jingyi, et al. Development of thermodynamic venting system technology for cryogenic propellant storage on orbit[J]. Cryogenics & Superconductivity, 2015, 43(2): 513.
[17]李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究进展[J]. 载人航天, 2012, 18(1): 3036.
LI Peng, SUN Peijie, BAO Yiying, et al. Cryogenic propellant longterm storage on orbit technology overview[J]. Manned Spaceflight, 2012, 18(1): 3036.
[18]冶文莲, 王小军,王丽红. 微重力下低温贮箱压力控制技术进展[J]. 低温与超导, 2012,40(6) : 812.
YE Wenlian, WANG Xiaojun, WANG Lihong. Progress of pressure control technology of cryogenic storage tanks in microgravity[J].Crogenics & Superconductivity, 2012, 40(6): 812.
[19]胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术, 2009(6): 2834.
HU Weifeng, SHEN Lin, YANG Jianmin, et al. Progress of study on transpiration control technology for orbit longterm applied cryogenic propellant[J]. Missiles and Space Vehicles, 2009 (6): 2834.
[20]胡伟峰, 申麟, 彭小波,等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程,2011(3): 5966.
HU Weifeng, SHEN Lin, PENG Xiaobo, et al. Key technology analysis of boilfoo control study on cryogenic propellant longterm application on orbit[J]. Crogenics, 2011 (3): 5966.
[21]马原, 厉彦忠, 王磊, 等. 低温燃料贮箱热力学排气系统优化分析与性能研究[J]. 低温与超导, 2014,42(7): 1015.
MA Yuan, LI Yanzhong, WANG Lei, et al. Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J]. Cryogenics & Superconductivity, 2014, 42(7): 1015.
[22]杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 486487.
Options
文章导航

/