兵器工业

 基于绝对节点坐标法变截面柔性梁运动稳定性研究

展开
  •  上海交通大学   a. 机械系统与振动国家重点实验室;
    b. 上海市复杂薄板结构数字化制造重点实验室, 上海 200240

网络出版日期: 2017-10-31

基金资助

 

 Study on Motion Stability of Variable CrossSection Flexible Beams
 Based on the Absolute Nodal Coordinate Formulation

Expand
  •  a. State Key Laboratory of Mechanical System and Vibration; b. Shanghai Key Laboratory of Digital
      Manufacture for Thinwalled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-10-31

Supported by

 

摘要

 基于绝对节点坐标法,考虑变截面梁单元的几何边界特征,利用非线性介质力学方法推导其刚度矩阵,进而建立柔性梁结构动力学方程.基于梁结构运动过程中状态空间方程和Lyapunov理论,提出变截面柔性梁结构运动及稳定性判定方法,研究了材料属性与变截面对梁结构空间运动过程中稳定性的影响.结果表明:当材料弹性模量较小时,变截面梁的稳定性略优于等截面梁;当材料的弹性模量增大,等截面梁单元稳定性大大增加,而变截面梁单元所受影响甚微;当弹性模量的增加达到一定值后,等截面梁的运动也趋于稳定.

本文引用格式

罗晶晶a,余海东a,赵春璋a,b,王皓a,b .  基于绝对节点坐标法变截面柔性梁运动稳定性研究[J]. 上海交通大学学报, 2017 , 51(10) : 1174 -1180 . DOI: 10.16183/j.cnki.jsjtu.2017.10.004

Abstract

 The boundary features of the variable crosssection beams are taken into consideration and the stiffness matrix is derived based on the nonlinear continuum mechanics. A dynamic model of the beam is established by using the absolute nodal coordinate formulation. The statespace equation of the beam during motion is developed. Based on the Lyapunov theory a criterion of the motion stability of the flexible beams is proposed, and the effects of material properties and variable crosssections are investigated. The results indicate that with a small elastic modulus, the variable crosssection beam shows a better stability than the constant crosssection beam. As the elastic modulus increases, the stability of the constant crosssection becomes better than that of the variable crosssection beam. When the  elastic modulus reaches a certain value, the motion of constant crosssection beam becomes stable.

参考文献

 [1]SHABANA A A. Flexible multibody dynamics: Review of past and recent developments[J]. Multibody System Dynamics, 1997, 1(2): 189222.
[2]OMAR M A, SHABANA A A. A twodimensional shear deformable beam for large rotation and deformation problems[J]. Journal of Sound and Vibration, 2001, 243(3): 565576.
[3]SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements: Theory[J]. Journal of Mechanical Design, ASME, 2001, 123(4): 606613.
[4]赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 3845.
ZHAO Chunzhang, YU Haidong, WANG Hao, et al. Dynamic modeling and kinematic behavior of variable crosssection beam based on the absolute nodal coordinate formulation[J]. Journal of Mechanical Engineering, 2014, 50(17): 3845.
[5]ZHAO Chunzhang, YU Haidong, LIN Zhangqin, et al. Dynamic model and behavior of viscoelastic beam based on the absolute nodal coordinate formulation[J]. Proceedings of the Institution of Mechanical Engineers. Part K: Journal of MultiBody Dynamics, 2014, 229(1): 8496.
[6]李彬, 刘锦阳. 大变形柔性梁系统的绝对坐标方法[J].上海交通大学学报, 2005, 39(5): 827831.
LI Bin, LIU Jinyang. Application of absolute nodal coordination formulation in flexible beams with large deformation[J]. Journal of Shanghai Jiao Tong University, 2005, 39(5): 827831.
[7]刘铖, 田强, 胡海岩. 基于绝对节点坐标的多柔体系统动力学高效计算方法[J]. 力学学报, 2010, 42(6): 11971205.
LIU Cheng, TIAN Qiang, HU Haiyan. Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 11971205.
[8]SHEN Z, LI P, LIU C, et al. A finite element beam model including crosssection distortion in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2014, 77(3): 10191033.
[9]ORZECHOWSKI G, SHABANA A A. Analysis of warping deformation modes using higher order ANCF beam element[J]. Journal of Sound and Vibration, 2016, 363: 428445.
[10]李俊峰, 王照林. 航天器柔性伸展附件非线性振动稳定性研究[J].宇航学报, 1998, 19(3): 9396.
LI Junfeng, WANG Zhaolin. Study on the stability of nonlinear vibrations of a deploying flexible appendage of a spacecraft[J]. Journal of Astronautics, 1998, 19(3): 9396.
[11]李凤明, 王日新, 汪越胜, 等. 柔性压电梁结构运动稳定性分析[C]∥2006年压电声波和设备应用研讨会论文集. 新加坡: 世界科学出版社, 2007: 2630.
[12]刘屿, 黄浩维, 邬依林, 等. 基于Lyapunov直接法的柔性梁振动控制[J].华南理工大学学报(自然科学版), 2013, 41(2): 2430.
LIU Yu, HUANG Haowei, WU Yilin, et al. Vibration control of lexible beam based on Lyapunov direct method[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(2): 2430.
[13]刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001: 7982.
[14]张凯之. 盾构机冗余驱动回转系统动态特性研究[D].上海:  上海交通大学机械与动力工程学院, 2011.
Options
文章导航

/