兵器工业

 微网优化控制研究现状及智能化即插即用趋势与策略

  • JIANG Haixiao1 ,
  • 2 ,
  • ZHENG Yi 1 ,
  • LI Shaoyuan1 ,
  • CAI Xu1
展开
  •  1. 上海交通大学  电子信息与电气工程学院, 上海 200240;
    2. 中国中车株洲电力机车研究所, 湖南 株洲 412001

网络出版日期: 2017-09-20

基金资助

 

 Operational Optimization of MicroGrid Control:
 A Brief Introduction and an Intelligent PlugandPlay Control Strategy

  • 江海啸1 ,
  • 2,郑毅1,李少远1,蔡旭1
Expand
  •  1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
     Shanghai 200240, China; 2. CRRC Zhuzhou Institute Co., Ltd, Zhuzhou 412001, Hunan, China

Online published: 2017-09-20

Supported by

 

摘要

 微型电网是在用户侧提高整体能源效率、清洁化程度和智能化程度的重要手段,其优化运行控制是能否有效发挥上述作用的关键.分析了不同微网结构,即直流微网、交流微网和交直流微网在控制优化需求方面的异同及优缺点.重点介绍比对了目前微电网低层控制方法和监督层的能量管理策略.总结了目前微网控制优化的热点问题及发展趋势,并提出了智能化即插即用微网构架在算法和实现方面的解决策略.

本文引用格式

JIANG Haixiao1 , 2 , ZHENG Yi 1 , LI Shaoyuan1 , CAI Xu1 .  微网优化控制研究现状及智能化即插即用趋势与策略[J]. 上海交通大学学报, 2017 , 51(9) : 1097 -1103 . DOI: 10.16183/j.cnki.jsjtu.2017.09.012

Abstract

  Microgrid is an important method to improve overall energy efficiency, cleaning degree and intelligent degree from demand side. The operational optimal control is the key to the abovementioned issues. This paper summarizes the different control requirements and controlled variables for different types of microgrid (direct current, alternating current and hybrid). The energy management strategies and control algorithms for different microgrids are introduced. Meanwhile, the advantage and disadvantage of different algorithms are summarized. The hotspots and future of microgrids control system are also presented and discussed. Finally an intelligent distributed control and optimization solution is proposed for realizing the “plugandplay” function.

参考文献

 [1]BACHA S, PICAULT D, BURGER B, et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects[J].  IEEE Industrial Electronics Magazine, 2015, 9(1): 3346.
[2]吴卫民, 何远彬, 耿攀, 等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1): 98106.
WU Weimin, HE Yuanbin, GENG Pan, et al.  Key technologies for DC microgrids[J].  Transactions of China Electrotechnical Society, 2012, 27(1): 98106.
[3]王毅, 张丽荣, 李和明, 等. 风电直流微网的电压分层协调控制[J]. 中国电机工程学报, 2013, 33(4): 1624.
WANG Yi, ZHANG Lirong, LI Heming, et al.  Hierarchical coordinated control of wind turbinebased DC microgrid[J].  Proceedings of the CSEE, 2013, 33(4): 1624.
[4]NEJABATKHAH F, LI Y W.  Overview of power management strategies of hybrid AC/DC microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 70727089.
[5]李武华, 顾云杰, 王宇翔, 等. 新能源直流微网的控制架构与层次划分[J].  电力系统自动化, 2015, 39(9): 156162.
LI Wuhua, GU Yunjie, WANG Yuxiang, et al.  The control architecture and hierarchy selection of new energy DC microgrid[J].  Automation of Electric Power Systems, 2015, 39(9): 156162.
[6]许守平, 侯朝勇, 王坤洋, 等. 分层控制在微网中的应用研究[J].  电网与清洁能源, 2013, 29(6): 3945.
XU Shouping, HOU Chaoyong, WANG Kunyang, et al.  Application research of hierarchical control in microgrid[J]. Power System and Clean Energy, 2013, 29(6): 3945.
[7]SALOMONSSON D, SODER L, SANNINO A.  Lowvoltage DC distribution system for commercial power systems with sensitive electronic loads[J].  IEEE Transactions on Power Delivery, 2007, 22(3): 16201627.
[8]殷晓刚, 戴冬云, 韩云, 等. 交直流混合微网关键技术研究[J].  高压电器, 2012, 48(9): 4346.
YIN Xiaogang, DAI Dongyun, HAN Yun, et al.  Discussion on key technologies of ACDC hybrid microgrid[J]. High Voltage Apparatus, 2012, 48(9): 4346.
 [9]郭力, 富晓鹏, 李霞林, 等. 独立交流微网中电池储能与柴油发电机的协调控制[J]. 中国电机工程学报, 2012, 32(25): 7078.
GUO Li, FU Xiaopeng, LI Xialin, et al.  Coordinated control of battery storage and diesel generators in isolated AC microgrid systems[J].  Proceedings of the CSEE, 2012, 32(25): 7078.
[10]ZHENG Y, LI S, QIU H. Networked coordination based distributed model predictive control for largescale system[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 991998.
[11]WANG Chen, ZHANG Tengfei, MA Fumin.  A multiagent based hierarchical control system for DERs management in islanded microgrid[C]∥Chinese Automation Congress. Wuhan: IEEE, 2016: 13711376.
[12]MOHAMED A R I , EISAADANY E F.  Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 28062816.
[13]HE J, LI Y W.  An enhanced microgrid load demand sharing strategy[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 39843995.
[14]YAO W, CHEN M, MATAS J, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576588.
[15]吕振宇, 吴在军, 窦晓波,等. 基于离散一致性的孤立直流微网自适应下垂控制[J]. 中国电机工程学报, 2015, 35(17): 43974407.
L Zhenyu, WU Zaijun, DOU Xiaobo, et al.  An adaptive droop control for the islanded DC microgrid based on discrete consensus algorithm[J]. Proceedings of the CSEE, 2015, 35(17): 43974407.
[16]ZHENG Y, LI S, TAN R.  Distributed model predictive control for onconnected microgrid power management[J].  IEEE Transactions on Control Systems Technology, 2017, 99: 112.
文章导航

/