兵器工业

 聚合物薄膜表面微结构的粉末热辊压成形工艺

展开
  •  上海交通大学 上海市复杂薄板结构数字化制造重点实验室

网络出版日期: 2017-09-20

基金资助

 

 RolltoRoll Powder Hot Embossing Process for Fabrication of MicroStructures on Polymer Film

Expand
  •  Shanghai Key Laboratory of Digital Manufacture for Thinwalled Structures,
     Shanghai Jiao Tong University

Online published: 2017-09-20

Supported by

 

摘要

 利用卷对卷热辊压工艺连续、高效和粉末冶金成形技术精度高的优点,提出了一种在聚合物薄膜表面制备微结构粉末的热辊压成形工艺方法,构建了聚合物薄膜表面微结构粉末热辊压成形工艺试验系统并进行了粉末热辊压成形工艺试验,通过单因素试验研究了工艺参数(模具温度、辊压速度和辊压力)对成形质量的影响规律.结果表明,采用模具温度130~145℃,辊压速度0.2~0.8m/min和辊压力250~500N的粉末热辊压成形工艺参数,能够得到聚合物粉末充型完整的微金字塔阵列结构.

本文引用格式

舒赟翌,彭林法,易培云,来新民 .  聚合物薄膜表面微结构的粉末热辊压成形工艺[J]. 上海交通大学学报, 2017 , 51(9) : 1083 -1089 . DOI: 10.16183/j.cnki.jsjtu.2017.09.010

Abstract

 This study proposed a rolltoroll (R2R) powder hot embossing process for the fabrication of microstructures on polymer film by combining the merits of R2R hot embossing process and powder metallurgy technology. An R2R powder hot embossing system was developed and a series of embossing experiments were conducted. The influences of processing parameters, which included mold temperature, feeding speed and applied force, had been investigated systematically by using the onevariableatatime (OVAT) method. It was found that the completelyfilled micropyramid arrays could be fabricated by R2R powder hot embossing process under the mold temperature of 130—145℃, the feeding speed of 0.2—0.8m/min and the applied force of 250—500N.

参考文献

 [1]易培云, 彭林法, 来新民. 光学薄膜微细结构制造方法新进展[J]. 科学通报, 2015, 60(28/29): 27072718.
YI Peiyun, PENG Linfa, LAI Xinmin. Recent progress in fabrication methods for micro structures on optical thin film[J]. Chinese Science Bulletin, 2015, 60(28/29): 27072718.
[2]LEE J Y, KIM Y J, NAHM K B, et al. Optical simulation of micropyramid arrays for the applications in the field of backlight unit of LCD[C]∥IMID/IDMC ′06 DIGEST.  2006: 13431346.
[3]贺永, 傅建中, 陈子辰. 微热压印过程中聚合物流动形貌的研究[J].光学精密工程, 2008, 16(2): 270278.
HE Yong, FU Jianzhong, CHEN Zichen. Study on polymer flow profile in micro hot embossing[J]. Optics and Precision Engineering, 2008, 16 (2): 270278.
[4]NAGARAJAN P, YAO D. Rubberassisted micro forming of polymer thin films[J]. Microsystem Technologies, 2009, 15(2): 251257.
[5]FAGAN M D, KIM B H, YAO D. A novel process for continuous thermal embossing of largearea nanopatterns onto polymer films[J]. Advances in Polymer Technology, 2009, 28(4): 246256.
[6]YUN D, SON Y, KYUNG J, et al. Development of rolltoroll hot embossing system with induction heater for micro fabrication[J]. Review of Scientific Instruments, 2012, 83(1): 015108.
[7]VELTEN T, BAUERFELD F, SCHUCK H, et al. Rolltoroll hot embossing of microstructures[J]. Microsystem Technologies, 2011, 17(4): 619627.
[8]YI P, SHU Y, DENG Y, et al. Mechanism of forming defects in rolltoroll hot embossing of micropyramid arrays I: Experiments[J]. Journal of Micromechanics and Microengineering, 2015, 25(10): 105017.
[9]SAHLI M, GELIN J C, BARRIRE T. Replication of microchannel structures in WCCo feedstock using elastomeric replica moulds by hot embossing process[J]. Materials Science and Engineering: C, 2015, 55: 252266.
[10]银锐明, 范景莲, 钟定铭, 等. Fe2(MoO4)3/Si3N4复合粉末还原及热压微观组织结构分析[J].中南大学学报 (自然科学版), 2011, 42(4): 909914.
YIN Ruiming, FAN Jinglian, ZHONG Dingming, et al. Microstructure of Fe2(MoO4)3/Si3N4 composite powders by reduction and hot pressing[J]. Journal of Central South University (Science and Technology), 2011, 42(2): 909914.
[11]SRIVATSAN T S, WOODS R, PETRAROLI M, et al. An investigation of the influence of powder particle size on microstructure and hardness of bulk samples of tungsten carbide[J]. Powder Technology, 2002, 122(1): 5460.
[12]XU Y, TSUMORI F, KANG H, et al. Fabrication of micro patterned ceramic structure by imprinting process[J]. Journal of the Japan Society of Powder & Powder Metallurgy, 2011, 58(11): 673678.
[13]DENG Y J, YI P Y, PENG L F, et al. Experimental investigation on the largearea fabrication of micropyramid arrays by rolltoroll hot embossing on PVC film[J]. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023.
[14]CHENG B, PRICE S, LYDON J, et al. On process temperature in powderbed electron beam additive manufacturing: Model development and validation[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061019.
[15]MONTES J M, CUEVAS F G, CINTAS J. Effective area in powder compacts under uniaxial compression[J]. Materials Science and Engineering: A, 2005, 395(1/2): 208213.
Options
文章导航

/