兵器工业

 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型

展开
  •  上海交通大学 制冷及低温工程研究所

网络出版日期: 2017-09-20

基金资助

 

 Numerical Model of a Microchannel Parallel Flow Evaporator with
New Flow Boiling Heat Transfer Correlation

Expand
  •  Institute of Refrigeration and Cryogenics

Online published: 2017-09-20

Supported by

 

摘要

  提出了一种基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型,并与文献中的实验数据进行对比,以验证微通道平行流蒸发器数值模型的正确性.其中,在制冷剂流量为34.6~245.6kg/h,蒸发压力为200~500kPa的条件下,分析了4种流动沸腾传热关联式对所提出的数值模型的影响.结果表明,在所采用的99%的实验数据下,新流动沸腾传热关联式的预测误差在±30%范围内.与此同时,采用所提出的微通道平行流蒸发器数值模型预测微通道平行流蒸发器的制冷量、制冷剂过热度、空气侧和制冷剂侧压降所产生的平均绝对误差分别为1.5%、18.8%、14.2%和19.8%.

本文引用格式

马磊,谷波,田镇,李萍 .  基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报, 2017 , 51(9) : 1043 -1049 . DOI: 10.16183/j.cnki.jsjtu.2017.09.004

Abstract

 In this paper, a numerical model with the recently proposed flow boiling heat transfer correlation was established for microchannel parallel flow evaporator. The numerical model was verified by comparing the experimental data with the open literature, where the refrigerant mass flow rate range was 34.6—245.6kg/h and evaporation pressure was 200—500kPa. The effects of four different flow boiling heat transfer correlations on the numerical model performance were investigated. Results showed that the correlation predicted 99% of experimental data in a ±30% error band. Moreover, the numerical model with the correlation yielded the mean absolute errors of 1.5%, 18.8%, 14.2% and 19.8% in prediction of cooling capacity, refrigerant superheat, air side and refrigerant side pressure drop, respectively. The presented numerical model can be used to evaluate and optimize the performance of  microchannel parallel flow evaporator.

参考文献

 [1]QI Z, CHEN J, RADERMACHER R. Investigating performance of new minichannel evaporators[J]. Applied Thermal Engineering, 2009, 29(17/18): 35613567.
[2]JOKAR A, HOSNI M H, ECKELS S J. Dimensional analysis on the evaporation and condensation of refrigerant R134a in minichannel plate heat exchangers[J]. Applied Thermal Engineering, 2006, 26(17/18): 22872300.
[3]ONG C L, THOME J R. Macrotomicrochannel transition in twophase flow. Part 2. Flow boiling heat transfer and critical heat flux[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 873886.
[4]梁媛媛, 赵宇, 陈江平. 微通道平行流蒸发器仿真模型[J]. 上海交通大学学报, 2013, 47(3): 413417.
LIANG Yuanyuan, ZHAO Yu, CHEN Jiangping. Numerical model for microchannel parallel flow evaporator[J]. Journal of Shanghai Jiao Tong University, 2013, 47(3): 413417.
 [5]TSO C P, CHENG Y C, LAI A C K. Dynamic behavior of a direct expansion evaporator under frosting condition. Part I. Distributed model[J]. International Journal of Refrigeration, 2006, 29(4): 611623.
[6]张萍, 谷波, 王婷. 多元微通道平行流冷凝器理论模型与实验研究[J]. 上海交通大学学报, 2013, 47(11): 17381744.
ZHANG Ping, GU Bo, WANG Ting. Theoretical model and experimental research on multiple microchannel parallel flow condenser[J]. Journal of Shanghai Jiao Tong University, 2013, 47(11): 17381744.
 [7]方继华, 谷波, 田镇. 制冷剂侧结构对多元微通道平行流冷凝器传热与流动性能的影响[J]. 上海交通大学学报, 2014, 48(9): 13151322.
FANG Jihua, GU Bo, TIAN Zhen. Effects of refrigerantside structure on heat transfer and flow performance of multiple microchannel parallel flow condenser[J]. Journal of Shanghai Jiao Tong University, 2014, 48(9): 13151322.
 [8]KANDLIKAR S G, BALASUBRAMANIAN P. An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels[J]. Heat Transfer Engineering, 2004, 25(3): 8693.
[9]BERTSCH S S, GROLL E A, GARIMELLA S V. A composite heat transfer correlation for saturated flow boiling in small channels[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 21102118.
[10]SUN L, MISHIMA K. An evaluation of prediction methods for saturated flow boiling heat transfer in minichannels[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 53235329.
[11]CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design & Development, 1962, 5(3): 322329.
[12]ZHANG M, WEBB R L. Correlation of twophase friction for refrigerants in smalldiameter tubes[J]. Experimental Thermal Fluid Science, 2001, 25(3/4): 131139.
Options
文章导航

/