上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (4): 525-533.doi: 10.16183/j.cnki.jsjtu.2022.423

• 电子信息与电气工程 • 上一篇    下一篇

基于增量式等距映射同双重局部密度方法的工业过程故障检测

冯立伟1,2, 孙立文2,3, 顾欢2,3, 李元1()   

  1. 1.沈阳化工大学 理学院,沈阳 110142
    2.沈阳化工大学 计算机科学与技术学院,沈阳 110142
    3.辽宁省化工过程工业智能化技术重点实验室, 沈阳 110142
  • 收稿日期:2022-10-28 修回日期:2022-12-09 接受日期:2022-12-30 出版日期:2024-04-28 发布日期:2024-04-30
  • 通讯作者: 李 元,教授,博士生导师; E-mail: li-yuan@mail.tsinghua.edu.cn.
  • 作者简介:冯立伟(1980-),讲师,从事基于数据驱动复杂过程故障监控与诊断研究.
  • 基金资助:
    国家自然科学基金(61673279);国家自然科学基金(62273242)

Industrial Process Fault Detection Based on Incremental Isometric Mapping and Double Local Density Method

FENG Liwei1,2, SUN Liwen2,3, GU Huan2,3, LI Yuan1()   

  1. 1. College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
    2. College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
    3. Key Laboratory of Intelligent Technology for Chemical Process Industry of Liaoning Province, Shenyang 110142, China
  • Received:2022-10-28 Revised:2022-12-09 Accepted:2022-12-30 Online:2024-04-28 Published:2024-04-30

摘要:

针对工业过程的非线性和动态性问题,提出一种基于流形学习下的增量式等距映射(IISOMAP)与双重局部密度(DLD)相结合的故障检测方法(IISOMAP-DLD).利用 IISOMAP 将原始数据映射到低维流形特征子空间和剩余子空间;然后,在两个子空间中分别引入双重局部密度方法构建统计量对过程进行监控;最后,将IISOMAP-DLD方法应用到田纳西-伊斯曼(TE)过程.实验结果表明,IISOMAP-DLD对比其他方法有更高的故障检测率.IISOMAP在保留数据内在特征的同时,解决了过程的非线性问题,而双重局部密度方法可消除过程的动态性.

关键词: 流形学习, 等距映射, 局部密度, 故障检测, 动态性

Abstract:

To address the nonlinearity and dynamics of industrial processes, an incremental isometric mapping (IISOMAP) in combination with double local density (DLD) is proposed as a fault detection method (IISOMAP-DLD) based on stream shape learning. First, IISOMAP is used to map the raw data into a low-dimensional manifold feature subspace and a residual subspace. Then, the double local density method is introduced in the two subspaces respectively to construct statistics to monitor the process. Finally, the IISOMAP-DLD method is applied to the Tennessee-Eastman (TE) process, and the experimental results show that IISOMAP-DLD has a higher fault detection rate than the other methods. IISOMAP preserves the intrinsic characteristics of the data and solves the nonlinear problems of the process, while the double local density method can eliminate the dynamic of the process.

Key words: manifold learning, isometric mapping (ISOMAP), local density, fault detection, dynamic

中图分类号: