上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 877-888.doi: 10.16183/j.cnki.jsjtu.2023.407

• 新型电力系统与综合能源 •    下一篇

用户-基站-充电站能量互动和储能共享优化方法

胡龙1, 方八零2(), 樊飞龙1, 陈达伟3, 李新喜4, 曾润5   

  1. 1.上海交通大学 国家电投智慧能源创新学院,上海 200240
    2.湖南工业大学 电气与信息工程学院,湖南 株洲 412007
    3.上海交通大学 电子信息与电气工程学院,上海 200240
    4.广东工业大学 材料与能源学院,广州 510006
    5.上海采日能源科技有限公司,上海 200240
  • 收稿日期:2023-08-21 修回日期:2023-09-26 接受日期:2023-10-23 出版日期:2025-07-28 发布日期:2025-07-22
  • 通讯作者: 方八零 E-mail:14118@hut.edu.cn
  • 作者简介:胡 龙(1997—),硕士生,从事储能运行优化和电力系统调度与分析研究.
  • 基金资助:
    国家自然科学基金资助项目(51977062)

Energy Interaction and Energy Storage Sharing Optimization Method for Users, Base Stations, and Charging Stations

HU Long1, FANG Baling2(), FAN Feilong1, CHEN Dawei3, LI Xinxi4, ZENG Run5   

  1. 1. College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
    2. College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
    3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    4. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
    5. Shanghai Sermatec Energy Technology Co., Ltd., Shanghai 200240, China
  • Received:2023-08-21 Revised:2023-09-26 Accepted:2023-10-23 Online:2025-07-28 Published:2025-07-22
  • Contact: FANG Baling E-mail:14118@hut.edu.cn

摘要:

园区工业用户、基站和充电站单一主体内部能量优化时,受其本地功率供给和需求限制,储能等灵活性资源利用率低,能量利用效率不足.基于工业用户、基站和充电站互补性量化,提出一种基于博弈定价激励机制的工业用户、基站和充电站能量共享、互动优化方法.通过工业用户、基站和充电站特性分析,构建以系统净负荷标准差为互补性指数的量化模型;考虑空调和电动汽车的可调节能力,以及工业用户、充电站与基站的主动决策能力,建立了激励工业用户、充电站和基站储能共享及能量互动的主从博弈定价模型;针对模型中存在0-1整数变量的特点,提出基于自适应差分进化算法和混合整数优化理论的求解方法.基于园区实际数据构建算例,对所提模型与方法进行验证,算例分析表明,优化工业用户、基站和充电站各时段储能和能源调度可有效利用其互补性,提高各主体的经济效益和闲置灵活性资源的利用率,同时提升系统整体的能源自洽能力.

关键词: 共享储能, 主从博弈, 灵活性资源, 基站, 电动汽车

Abstract:

The internal energy optimization within a single entity of industrial users, base stations, and charging stations is constrained by local power supply and demand limitations, resulting in low utilization of flexible resources such as energy storage and insufficient energy utilization efficiency. To address these issues, an energy sharing and interactive optimization method is proposed for industrial users, base stations, and charging stations based on the quantification of their complementarity and a game-based pricing incentive mechanism. First, a complementary quantification model is developed based on the analysis of the characteristics of industrial users, base stations, and charging stations, using the standard deviation of net load as a complementary indicator. Then, considering the adjustable capabilities of air conditioning and electric vehicles, as well as the proactive decision-making abilities of industrial users, charging stations, and base stations, a master-slave game-based pricing model is established to incentivize the sharing of energy storage and energy interaction among these entities. Next, incorporating 0-1 integer variables, a solution method utilizes the adaptive differential evolution algorithm combined with the mixed-integer optimization theory. Finally, case studies validate that optimizing the energy storage and energy dispatch of industrial users, base stations, and charging stations in different time periods can effectively leverage their complementarity, enhance the economic benefits of each entity, improve the utilization of idle flexible resources, and enhance the overall energy self-consistency of the system.

Key words: shared energy storage, Stackelberg game, flexible resources, base station, electric vehicle

中图分类号: