上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (S1): 60-68.doi: 10.16183/j.cnki.jsjtu.2023.S1.01
周东荣1, 张家铭2(), 庄欠伟4, 黄昕2,3, 翟一欣4, 朱小东1, 张弛4, 张子新2
收稿日期:
2022-07-07
修回日期:
2022-07-24
接受日期:
2022-08-19
出版日期:
2023-10-27
发布日期:
2023-11-10
通讯作者:
张家铭
E-mail:2032641@tongji.edu.cn.
作者简介:
周东荣(1978-),教授级高级工程师,主要从事船舶与海洋工程的研究.
基金资助:
ZHOU Dongrong1, ZHANG Jiaming2(), ZHUANG Qianwei4, HUANG Xin2,3, ZHAI Yixin4, ZHU Xiaodong1, ZHANG Chi4, ZHANG Zixin2
Received:
2022-07-07
Revised:
2022-07-24
Accepted:
2022-08-19
Online:
2023-10-27
Published:
2023-11-10
Contact:
ZHANG Jiaming
E-mail:2032641@tongji.edu.cn.
摘要:
依托“长江口二号”沉船打捞工程,采用耦合欧拉-拉格朗日法对极小曲率半径矩形曲线顶管底幕法沉船打捞工程进行数值模拟分析,获得底幕施工过程中顶推力以及船体竖向位移的动态变化,并与模型试验结果进行了对比验证.结果表明:所提的数值模型模拟结果和模型试验结果吻合较好,能较精确地预测沉船的变位和顶管的顶推力变化;最后一根管节推进为最危险工况,需要加强施工控制;采用左右对称推进而非顺序推进能够有效降低施工对沉船和土体的扰动.
中图分类号:
周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68.
ZHOU Dongrong, ZHANG Jiaming, ZHUANG Qianwei, HUANG Xin, ZHAI Yixin, ZHU Xiaodong, ZHANG Chi, ZHANG Zixin. CEL Numerical Analysis of Disturbance of Constructing Curved Beam Based on “Yangtze River Estuary II” Ancient Wreck[J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 60-68.
[1] | 新华网. “长江口二号”出水,打开近代上海的“时光宝盒”[EB/OL]. (2022-11-26)[2023-02-27]. http:\\csj.news.cn/2022-11/26/c_1310679804.htm. |
XINHUA NET. “Yangtze Estuary II” unearthed, launches the time machine of modern Shanghai[EB/OL]. (2022-11-26)[2023-02-27]. http:\\csj.news.cn/2022-11/26/c_1310679804.htm. | |
[2] | 史培新, 俞蔡城, 潘建立, 等. 拱北隧道大直径曲线管幕顶管顶力研究[J]. 岩石力学与工程学报, 2017, 36(9): 2251-2259. |
SHI Peixin, YU Caicheng, PAN Jianli, et al. Study on jacking force of large diameter curved pipe curtain pipe jacking in Gongbei tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2251-2259. | |
[3] | SHOU K J, JIANG J M, A study of jacking force for a curved pipejacking[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 298-304. |
[4] |
ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183-196.
doi: 10.1016/j.tust.2016.09.005 URL |
[5] | 王宁, 高毅, 于少辉, 等. 矩形顶管隧道群施工对后背土体扰动规律的初步研究[J]. 隧道建设(中英文), 2019, 39(3):413-420. |
WANG Ning, GAO Yi, YU Shaohui, et al. Disturbance of rectangular pipe jacking tunnel group construction on soil behind working shaft[J]. Tunnel Construction, 2019, 39(3): 413-420. | |
[6] | 刘永辉, 李明宇, 吕聪, 等. 浅覆土矩形顶管施工中地面沉降变化规律及分布特征研究[J]. 建筑技术, 2020, 51(2): 226-229. |
LIU Yonghui, LI Mingyu, LYU Cong, et al. Study on law and distribution characteristics of ground settlement aused by construction of shallow-overburden rectangular pipe jacking[J]. Architecture Technology, 2020, 51(2): 226-229. | |
[7] | 张家铭, 庄欠伟, 黄昕, 等. “长江口二号”古沉船曲线顶管底幕法打捞缩尺模型试验研究[J]. 现代隧道技术, 2022, 59(S1): 618-626. |
ZHANG Jiaming, et al. A reduced-scale model test of “Yangtze Estuary II” ancient shipwreck salvage[J]. Modern Tunnelling Technology, 2022, 59(S1): 618-626. | |
[8] | 汤渊. 地铁车站曲线顶管暗挖新方法数值模拟研究[J]. 地下空间与工程学报, 2014, 10(3): 650-655. |
TANG Yuan. Investigation on a new curved pipe jacking tunneling method for subway station using numerical simulation[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 650-655. | |
[9] |
QI P, HUANG Y, CHENG L J, et al. Influence of pipe jacking excavation in overlying quicksand layer on surface settlement and numerical analysis[J]. Highlights in Science, Engineering and Technology, 2022, 18: 20-25.
doi: 10.54097/hset.v18i.2518 URL |
[10] |
MA W J, WANG B L, WANG X, et al. Soil layer disturbance caused by pipe jacking: Measurement and simulation of a case study[J]. KSCE Journal of Civil Engineering, 2021, 25(4): 1467-1478.
doi: 10.1007/s12205-021-2262-4 |
[11] |
LI C, ZHONG Z L, LIU X R, et al. Numerical simulation for an estimation of the jacking force of ultra-long-distance pipe jacking with frictional property testing at the rock mass-pipe interface[J]. Tunnelling and Underground Space Technology, 2019, 89: 205-221.
doi: 10.1016/j.tust.2019.04.004 URL |
[12] |
CHENG C Y, DASARI G R, CHOW Y K, et al. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model[J]. Tunnelling and Underground Space Technology, 2007, 22(4): 450-466.
doi: 10.1016/j.tust.2006.08.002 URL |
[13] |
WANG D, WHITE D J, RANDOLPH M F. Large-deformation finite element analysis of pipe penetration and large-amplitude lateral displacement[J]. Canadian Geotechnical Journal, 2010, 47(8): 842-856.
doi: 10.1139/T09-147 URL |
[14] |
NAZEM M, CARTER J P, AIREY D W. Arbitrary Lagrangian-Eulerian method for dynamic analysis of geotechnical problems[J]. Computers and Geotechnics, 2009, 36(4): 549-557.
doi: 10.1016/j.compgeo.2008.11.001 URL |
[15] |
BENSON D J. Computational methods in Lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2/3): 235-394.
doi: 10.1016/0045-7825(92)90042-I URL |
[16] | 孟振, 陈锦剑, 王建华. 基于修正剑桥模型的软黏土中沉桩过程欧拉-拉格朗日耦合模拟分析[J]. 上海交通大学学报, 2017, 51(3): 263-268. |
MENG Zhen, CHEN Jinjian, WANG Jianhua. The coupled eulerian-Lagrangian analysis of pile jacking process in saturated soft clay by using modified cam-clay model[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 263-268. | |
[17] |
QIU G, HENKE S, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations[J]. Computers and Geotechnics, 2011, 38(1): 30-39.
doi: 10.1016/j.compgeo.2010.09.002 URL |
[18] |
HAMANN T, QIU G, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions[J]. Computers and Geotechnics, 2015, 63: 279-290.
doi: 10.1016/j.compgeo.2014.10.006 URL |
[19] |
THO K K, LEUNG C F, CHOW Y K, et al. Eulerian finite-element technique for analysis of jack-up spudcan penetration[J]. International Journal of Geomechanics, 2012, 12(1): 64-73.
doi: 10.1061/(ASCE)GM.1943-5622.0000111 URL |
[20] | 李登, 庄欠伟, 黄昕, 等. 矩形曲线顶管底幕法顶管顶推力计算方法研究[J]. 现代隧道技术, 2022, 59(S1): 461-470. |
LI Deng, ZHUANG Qianwei, Huang Xin, et al. Research on the calculation model of driving force for pipe jacking of rectangular curved pipe basing method[J]. Modern Tunnelling Technology, 2022, 59(S1): 461-470. |
[1] | 张弛, 袁一翔, 李炎龙, 周东荣, 胡建, 王建, 朱小东, 王钰. 曲线顶管底幕法的等比例试验[J]. 上海交通大学学报, 2023, 57(S1): 131-137. |
[2] | 辛尚哲, 王磊, 潘洁, 周东荣, 陈世海, 朱小东. 一种沉船打捞离底过程的三参数半定量风险评估方法[J]. 上海交通大学学报, 2023, 57(S1): 13-19. |
[3] | 袁玮皓, 李炎龙, 张弛, 周东荣, 胡建, 王钰. 曲线顶管发射架的设计及应用[J]. 上海交通大学学报, 2023, 57(S1): 124-130. |
[4] | 辛尚哲, 王磊, 范锦宇, 周东荣, 陈世海, 朱小东. 基于底质力时历计算的沉船打捞离底过程动力特性分析及系泊系统优化[J]. 上海交通大学学报, 2023, 57(S1): 1-12. |
[5] | 庄欠伟, 袁玮皓, 张弛, 袁一翔, 李炎龙, 周东荣. “长江口二号”古沉船打捞中矩形曲线底幕法机械及构造设计关键技术[J]. 上海交通大学学报, 2023, 57(S1): 138-144. |
[6] | 魏良孟, 朱小东, 易欠, 崔进, 周东荣. 大吨位沉船整体打捞中打捞框架吊装下放技术[J]. 上海交通大学学报, 2023, 57(S1): 170-177. |
[7] | 朱小东, 周东荣, 高定全. 大吨位沉船整体打捞耦合动力响应数值仿真[J]. 上海交通大学学报, 2023, 57(S1): 203-212. |
[8] | 潘洁, 王磊, 王一听, 周东荣, 朱小东. 基于Skempton公式的沉船打捞过程安全性分析[J]. 上海交通大学学报, 2023, 57(S1): 94-107. |
[9] | 李登, 庄欠伟, 黄昕, 周东荣, 朱小东, 张弛, 魏良孟. 竖向小曲率半径曲线顶管掘进管节-土体相互作用[J]. 上海交通大学学报, 2023, 57(S1): 69-79. |
[10] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[11] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[12] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[13] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[14] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[15] | 操太春, 吴刚, 孔祥逸, 于东玮, 吴琳, 张大勇. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||