上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (7): 1018-1026.doi: 10.16183/j.cnki.jsjtu.2022.417
收稿日期:
2022-10-20
修回日期:
2022-12-06
接受日期:
2023-01-10
出版日期:
2024-07-28
发布日期:
2024-07-26
通讯作者:
余墨多,助理研究员;E-mail:379440278@sjtu.edu.cn.
作者简介:
田 野(1996-),硕士生,从事船舶消磁研究.
TIAN Ye1, YU Moduo1(), HUANG Wentao1, TAI Nengling1, NIU Lu2
Received:
2022-10-20
Revised:
2022-12-06
Accepted:
2023-01-10
Online:
2024-07-28
Published:
2024-07-26
摘要:
在现代舰船消磁系统中,消磁绕组主要基于舰船舱壁的形状进行分布,难以保证每个消磁绕组的消磁效果.为解决这一问题,引入一种高维变量筛选中的倾斜关联筛选方法,选择合适的阈值,将原有绕组进行拆分重组,对原有消磁区段进行重新划分,进而改善每个绕组的单位绕组磁感应强度.针对绕组重组后消磁电流计算时存在的参数向量稀疏和多重共线的问题,提出了倾斜关联筛选-部分岭回归算法,通过仿真可知,在阈值为0.73和0.91时,该算法相较最小二乘法消磁误差最大幅值分别减小了10.08%和17.59%,而剩余均方根误差分别减小了10.45%和12.17%.根据仿真结果可知,采用该算法后消磁效果得到明显提升.
中图分类号:
田野, 余墨多, 黄文焘, 邰能灵, 牛璐. 基于倾斜关联筛选的船舶分区消磁绕组部署及消磁电流优化策略[J]. 上海交通大学学报, 2024, 58(7): 1018-1026.
TIAN Ye, YU Moduo, HUANG Wentao, TAI Nengling, NIU Lu. Degaussing Coil Deployment and Degaussing Current Optimization Strategy for Ship Partition Based on Tilted Correlation Screening[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1018-1026.
表2
相邻绕组单位绕组磁感应强度关联度表
绕组序号 | 关联度 | 绕组序号 | 关联度 |
---|---|---|---|
L1-L2 | 0.769 362 | L13-L14 | 0.962 847 |
L2-L3 | 0.591 805 | L14-L15 | 0.781 647 |
L3-L4 | 0.910 071 | L15-L16 | 0.536 287 |
L4-L5 | 0.613 498 | L16-L17 | 0.419 504 |
L5-L6 | 0.872 680 | L17-L18 | 0.873 163 |
L6-L7 | 0.640 723 | L18-L19 | 0.918 340 |
L7-L8 | 0.749 592 | L19-L20 | 0.714 019 |
L8-L9 | 0.829 750 | L20-L21 | 0.953 347 |
L9-L10 | 0.696 601 | L21-L22 | 0.826 416 |
L10-L11 | 0.797 570 | L22-L23 | 0.530 558 |
L11-L12 | 0.943 900 | L23-L24 | 0.945 969 |
L12-L13 | 0.701 524 |
[1] | 夏建超, 徐正喜, 左超, 等. 基于改进型粒子群算法的舰船消磁电流调整方法研究[J]. 船电技术, 2015, 35(4): 18-21. |
XIA Jianchao, XU Zhengxi, ZUO Chao, et al. Adjustment method of ship’s degaussing current based on improved particle swarm algorithm[J]. Marine Electric & Electronic Engineering, 2015, 35(4): 18-21. | |
[2] | 耿攀, 王向军, 王建勋, 等. 舰艇感应磁场补偿多目标优化设计方法研究[J]. 海军工程大学学报, 2020, 32(1): 76-81. |
GENG Pan, WANG Xiangjun, WANG Jianxun, et al. Research on multi-objective optimization design method for ship induced magnetic field compensation[J]. Journal of Naval University of Engineering, 2020, 32(1): 76-81. | |
[3] | 王志飞. 舰船消磁系统综述[J]. 船电技术, 2020, 40(9): 4-7. |
WANG Zhifei. Overview on the ship degaussing system[J]. Marine Electric & Electronic Engineering, 2020, 40(9): 4-7. | |
[4] |
郭成豹, 周炜昶. 舰船消磁绕组磁特征数值计算与验证研究[J]. 兵工学报, 2017, 38(10): 1988-1994.
doi: 10.3969/j.issn.1000-1093.2017.10.015 |
GUO Chengbao, ZHOU Weichang. Numerical simulation and verification of magnetic signatures of ship degaussing coils[J]. Acta Armamentarii, 2017, 38(10): 1988-1994.
doi: 10.3969/j.issn.1000-1093.2017.10.015 |
|
[5] | 唐申生, 周耀忠, 庄清华. 大型舰船分区消磁理论研究[J]. 海军工程大学学报, 2003, 15(1): 80-83. |
TANG Shensheng, ZHOU Yaozhong, ZHUANG Qinghua. The section degaussing theory of capital ships[J]. Journal of Naval University of Engineering, 2003, 15(1): 80-83. | |
[6] | 左超, 耿攀, 陈涛, 等. 基于遗传算法的消磁绕组优化设计[J]. 舰船科学技术, 2015, 32(2): 124-127. |
ZUO Chao, GENG Pan, CHEN Tao, et al. Optimization of degaussing winding design based on genetic algorithm[J]. Ship Science and Technology, 2015, 32(2): 124-127. | |
[7] | KIM E R, KIM G C, SON W D, et al. Optimal degaussing techniques and magnetic measurement system[C]//Proceedings of the 1997 International Conference on Marine Electromagnetic. London, UK: Reduction of a Ship’s Magnetic Field Signatures, 1997: 78-80. |
[8] | PARQ J H. Magnetometric demagnetization factors for hollow cylinders[J]. Journal of Magnetics, 2017, 22(4): 550-556. |
[9] | 杨文铁, 庄劲武, 陈盟, 等. 一种虑及频率影响的缩比船模垂向消磁绕组电感计算方法[J]. 海军工程大学学报, 2022, 34(3): 108-112. |
YANG Wentie, ZHUANG Jinwu, CHEN Meng, et al. An inductance calculation method of vertical degaussing windings of a scale ship model considering influence of frequency[J]. Journal of Naval University of Engineering, 2022, 34(3): 108-112. | |
[10] | 王琦, 袁建生, 赵启明. 基于有限元分析的潜艇直流输电线路电感计算[J]. 中国舰船研究, 2018, 13(1): 114-119. |
WANG Qi, YUAN Jiansheng, ZHAO Qiming. Inductance calculation of submarine DC transmission line based on finite element analysis[J]. Chinese Journal of Ship Research, 2018, 13(1): 114-119. | |
[11] | 彭之然, 汪光森, 翟小飞. 电磁轨道发射装置时变电感梯度建模与分析[J]. 电工技术学报, 2020, 35(23): 4843-4851. |
PENG Zhiran, WANG Guangsen, ZHAI Xiaofei. Modeling and analysis of time-varying inductance gradient for electromagnetic rail launcher[J]. Transactions of China Electro Technical Society, 2020, 35(23): 4843-4851. | |
[12] | VISHAL M, SHAIKH A K, NAVDEEP S, et al. Optimization in tri-axial degaussing system design and estimation of degaussing coil current[J]. IEEE Transactions on Magnetics, 2017, 53(4): 1-12. |
[13] | 范建明, 赵文春, 刘胜道. 基于垂向工作线圈消除大型非对称舰船固定磁性研究[J]. 舰船科学技术, 2022, 44(3): 125-128. |
FAN Jianming, ZHAO Wenchun, LIU Shengdao. Research on eliminating fixed magnetism of large asymmetric ships based on vertical working coil[J]. Ship Science and Technology, 2022, 44(3): 125-128. | |
[14] | 郭成豹, 周炜昶, 杨波. 通过式消磁实验中减小船模剩余纵向固定磁性的研究[J]. 海军工程大学学报, 2020, 32(4): 13-17. |
GUO Chengbao, ZHOU Weichang, YANG Bo. Study of reducing ship models’residual longitudinal permanent magnetic field in overrun deperming experiment[J]. Journal of Naval University of Engineering, 2020, 32(4): 13-17. | |
[15] | MARIUS B. Simulation of a ship’s deperming process using the Jiles-Atherton Model[J]. IEEE Transactions on Magnetics, 2021, 57(6): 1-7. |
[16] | ANKITA M, FARUK K. Electromagnetic signature reduction of ferromagnetic vessels using machine learning approach[J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-6. |
[1] | 刘昊东, 张庆振, 郭云鹤, 茅佳雯. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110. |
[2] | 陈玉珊, 秦琳琳, 吴刚, 毛俊鑫. 基于渐消记忆递推最小二乘法的电动汽车电池荷电状态在线估计[J]. 上海交通大学学报, 2020, 54(12): 1340-1346. |
[3] | 张建军,刘卫东,李乐,程瑞锋,郑海峰. 未知环境下水下机械手智能抓取的自适应阻抗控制[J]. 上海交通大学学报(自然版), 2019, 53(3): 341-347. |
[4] | 韦益夫1,2,KAWAMURA Yasumi3,王德禹1,2,3. 改进移动最小二乘法及其在结构可靠性分析中的应用[J]. 上海交通大学学报(自然版), 2018, 52(4): 455-460. |
[5] | 吴大鹏1,张磊1,吕翊1,熊余1,2. 大规模多域光网络中带有多参数拟合的跨域路径计算策略[J]. 上海交通大学学报(自然版), 2015, 49(02): 209-213. |
[6] | 胡先锋,郝志勇,刘联鋆,钱欣怡. 进气噪声源提取和空滤器声学性能优化[J]. 上海交通大学学报(自然版), 2013, 47(06): 1003-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||