上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (5): 719-729.doi: 10.16183/j.cnki.jsjtu.2022.285
张诚1,2, 琚长江1,2(), 熊灿1,2, 杨根科1,2
收稿日期:
2022-07-21
修回日期:
2022-08-13
接受日期:
2022-08-26
出版日期:
2024-05-28
发布日期:
2024-06-17
通讯作者:
琚长江,副研究员; E-mail: 作者简介:
张 诚(1999-),硕士生,从事混合储能管理系统研究.
基金资助:
ZHANG Cheng1,2, JU Changjiang1,2(), XIONG Can1,2, YANG Genke1,2
Received:
2022-07-21
Revised:
2022-08-13
Accepted:
2022-08-26
Online:
2024-05-28
Published:
2024-06-17
摘要:
随着储能充电站的应用需求逐渐上升,锂电池作为主要储能载体应用广泛.但在大功率且频繁充放电工况下,锂电池循环寿命会显著降低,导致储能成本升高.鉴于超级电容具有长寿命优势,构造由超级电容与锂电池组成的混合储能系统,通过优化控制策略提高锂电池寿命并降低储能充电站的投运成本.提出双级主动式拓扑的混合储能系统,由锂电池为两个超级电容模组交替充电,再通过超级电容模组高倍率放电.基于此,根据充电桩工况提出多阶段功率状态估计协同规划策略,通过优化功率分配方案来平缓锂电池功率波动,从而保护锂电池.仿真结果表明:相较于纯锂电池储能和传统全主动式拓扑储能,双级主动式拓扑储能方案显著提高了锂电池循环寿命.
中图分类号:
张诚, 琚长江, 熊灿, 杨根科. 基于双级主动式拓扑的锂电池寿命优化[J]. 上海交通大学学报, 2024, 58(5): 719-729.
ZHANG Cheng, JU Changjiang, XIONG Can, YANG Genke. Optimization of Lithium Battery Lifetime Based on Dual-Stage Active Topology[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 719-729.
表1
超级电容运行状态
情形 | 超级电容运行状态 |
---|---|
PC>PBAT_ref, SC1与SC2满电 | SC1放电, SC2静置 |
PC>PBAT_ref, SC1电量不足, SC2有电 | SC1充电, SC2放电 |
PC>PBAT_ref, SC1有电, SC2电量不足 | SC1放电, SC2充电 |
PC>PBAT_ref, SC1与SC2电量不足 | SC1静置, SC2静置 |
PC≤PBAT_ref, SC1与SC2电量未满电 | SC1充电, SC2充电 |
PC≤PBAT_ref, SC1电量不足,SC2满电 | SC1充电, SC2静置 |
PC≤PBAT_ref, SC1满电, SC2电量不足 | SC1静置, SC2充电 |
PC≤PBAT_ref, SC1与SC2满电 | SC1静置, SC2静置 |
表3
锂电池寿命影响因素统计结果
工况 | 储能 系统结构 | 功率 分配 策略 | BAT峰值 功率放电 时间/s | BAT峰值 功率放电 能量/ (kW·h) | BAT最高 放电功率/ kW |
---|---|---|---|---|---|
1 | 纯锂电池 | — | 1394 | 6.4204 | 118.00 |
全主动式 | RB | 251 | 0.7796 | 117.00 | |
MCSP | 280 | 0.6380 | 113.91 | ||
双级主动式 | RB | 0 | 0 | 100.00 | |
MCSP | 0 | 0 | 96.62 | ||
2 | 纯锂电池 | — | 1442 | 11.1640 | 131.55 |
全主动式 | RB | 431 | 3.1965 | 131.55 | |
MCSP | 616 | 3.8961 | 131.55 | ||
双级主动式 | RB | 0 | 0 | 100.00 | |
MCSP | 68 | 0.0142 | 103.45 |
[1] | SOLTANI M, RONSMANS J, KAKIHARA S, et al. Hybrid battery/lithium-ion capacitor energy storage system for a pure electric bus for an urban transportation application[J]. Applied Sciences, 2018, 8(7): 1176. |
[2] | 陈斌, 吕彦伯, 谌可炜, 等. 固态超级电容器电解质的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939. |
CHEN Bin, LÜ Yanbo, CHEN Kewei, et al. Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939. | |
[3] | DOUGAL R A, LIU S, WHITE R E. Power and life extension of battery-ultracapacitor hybrids[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(1): 120-131. |
[4] | WANG Y, YANG Z P, LIN F, et al. A hybrid energy management strategy based on line prediction and condition analysis for the hybrid energy storage system of tram[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1793-1803. |
[5] | SONG Z Y, HOU J, HOFMANN H, et al. Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles[J]. Energy, 2017, 122: 601-612. |
[6] | LIAO H T, PENG J, WU Y, et al. Adaptive split-frequency quantitative power allocation for hybrid energy storage systems[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2306-2317. |
[7] | SONG Z Y, HOFMANN H, LI J Q, et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system[J]. Applied Energy, 2014, 134: 321-331. |
[8] | LIU B H, LI L, WANG X Y, et al. Hybrid electric vehicle downshifting strategy based on stochastic dynamic programming during regenerative braking process[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4716-4727. |
[9] | LI Y C, HE H W, PENG J K, et al. Deep reinforcement learning-based energy management for a series hybrid electric vehicle enabled by history cumulative trip information[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7416-7430. |
[10] | 程龙. 基于混合储能系统的多电飞机功率脉动平抑技术研究[D]. 南京: 南京航空航天大学, 2023. |
CHENG Long. Research on power pulsation suppression technology of multi-electric aircraft based on hybrid energy storage system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023. | |
[11] | JING W L, LAI C H, WONG W S H, et al. A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification[J]. Applied Energy, 2018, 224: 340-356. |
[12] | SHEN P, OUYANG M G, LU L G, et al. The Co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 92-103. |
[13] | 汪玉洁. 动力锂电池的建模、状态估计及管理策略研究[D]. 合肥: 中国科学技术大学, 2017. |
WANG Yujie. Research on modeling, state estimation and management strategy of power lithium battery[D]. Hefei: University of Science and Technology of China, 2017. | |
[14] | SILVAS E, HOFMAN T, MURGOVSKI N, et al. Review of optimization strategies for system-level design in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 57-70. |
[15] | VERGARA C R. Parametric interface for Battery Energy Storage Systems providing ancillary services[C]// 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe. Berlin, Germany: IEEE, 2012: 1-7. |
[16] | PIZARRO-CARMONA V, CORTÉS-CARMONA M, PALMA-BEHNKE R, et al. An optimized impedance model for the estimation of the state-of-charge of a Li-ion cell: The case of a LiFePO4 (ANR26650)[J]. Energies, 2019, 12(4): 681. |
[17] | Shanghai Aowei Technology Development Co., Ltd.. UCK42V14000C datasheet[EB/OL]. (2018-12-10)[2022-08-06]. http://www.aowei.com/en/uploads/product/20181210/15444197596029.pdf. |
[18] | MILLNER A. Modeling Lithium Ion battery degradation in electric vehicles[C]// 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply. Waltham, USA: IEEE, 2010: 349-356. |
[19] | HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. |
[20] | 王德顺, 薛金花, 马林康. 磷酸铁锂电池组典型储能工况循环老化研究[J]. 电源技术, 2022, 46(4): 371-375. |
WANG Deshun, XUE Jinhua, MA Linkang. Study on cycle aging of LiFePO4 battery pack under typical energy storage working condition[J]. Chinese Journal of Power Sources, 2022, 46(4): 371-375. | |
[21] | ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: 102743. |
[22] | 刘畅. 锂电池与超级电容混合储能系统的优化配置与能量管理[D]. 合肥: 中国科学技术大学, 2020. |
LIU Chang. Optimal configuration and energy management of lithium battery and supercapacitor hybrid energy storage system[D]. Hefei: University of Science and Technology of China, 2020. | |
[23] | LIU S, WEI L, WANG H. Review on reliability of supercapacitors in energy storage applications[J]. Applied Energy, 2020, 278: 115436. |
[24] | MERTEN M, OLK C, SCHOENEBERGER I, et al. Bidding strategy for battery storage systems in the secondary control reserve market[J]. Applied Energy, 2020, 268: 114951. |
[25] | ABDALLA A N, NAZIR M S, TAO H, et al. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview[J]. Journal of Energy Storage, 2021, 40: 102811. |
[26] | WONG L A, RAMACHANDARAMURTHY V K, TAYLOR P, et al. Review on the optimal placement, sizing and control of an energy storage system in the distribution network[J]. Journal of Energy Storage, 2019, 21: 489-504. |
[27] | HAN X J, LIANG Y B, AI Y Y, et al. Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries[J]. Energy, 2018, 165: 326-339. |
[28] | BANESHI M, HADIANFARD F. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions[J]. Energy Conversion and Management, 2016, 127: 233-244. |
[1] | 吴志伟, 张建龙, 吴红杰, 殷承良. 低速电动汽车混合能源存储系统效率分析 [J]. 上海交通大学学报(自然版), 2012, 46(08): 1304-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||