上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (2): 183-193.doi: 10.16183/j.cnki.jsjtu.2021.259
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
宋寅搏1, 阴悦1, 闫勇升1, 王晓情1, 陈务军1(), 任思杰2
收稿日期:
2021-07-12
修回日期:
2021-11-08
接受日期:
2021-12-16
出版日期:
2023-02-28
发布日期:
2023-03-01
通讯作者:
陈务军
E-mail:cwj@sjtu.edu.cn.
作者简介:
宋寅搏(1998-),硕士生,从事膜结构设计与织物膜材力学性能研究.
基金资助:
SONG Yinbo1, YIN Yue1, YAN Yongsheng1, WANG Xiaoqing1, CHEN Wujun1(), REN Sijie2
Received:
2021-07-12
Revised:
2021-11-08
Accepted:
2021-12-16
Online:
2023-02-28
Published:
2023-03-01
Contact:
CHEN Wujun
E-mail:cwj@sjtu.edu.cn.
摘要:
膜结构屋面因其对自然光源的充分利用和形式灵活等优势而在体育场馆等大跨度建筑中广泛应用,为解决其保温隔热性能差、易受外界环境因素影响等突出问题,多层膜结构设计、铺设保温层等方案被应用于工程实践,但热环境监测及分析的相关研究仍存在空白.为了研究双层聚四氟乙烯-气凝胶屋面体育馆的热环境,多点均匀布置测温仪进行监测,利用实测数据构建整体温度场;建立能够准确反映温度场变化的热物理模型,平均误差小于5%;以屋面保温层铺设为变量,基于该模型(原始工况)构建了无保温层、仅岩棉保温层和全为气凝胶保温层3种工况.对比发现,气凝胶的铺设使得室内空间的平均温度降低了2.0 ℃;原始工况的保温隔热效果最佳,室内外平均温差为9.6 ℃,研究可为膜结构屋面的保温隔热设计提供参考.
中图分类号:
宋寅搏, 阴悦, 闫勇升, 王晓情, 陈务军, 任思杰. 双层膜结构体育馆夏季热环境监测与分析[J]. 上海交通大学学报, 2023, 57(2): 183-193.
SONG Yinbo, YIN Yue, YAN Yongsheng, WANG Xiaoqing, CHEN Wujun, REN Sijie. Thermal Environment Monitoring and Analysis of an Enclosed Gymnasium with Double-Layered Membrane Roof in Summer[J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 183-193.
[1] |
GURLICH D, REBER A. Daylight performance of a translucent textile membrane roof with thermal insulation[J]. Buildings, 2018, 8(9): 118-137.
doi: 10.3390/buildings8090118 URL |
[2] |
HU J H, CHEN W J. Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance[J]. Engineering Structures, 2020, 210: 110292.
doi: 10.1016/j.engstruct.2020.110292 URL |
[3] | LIU H B, LI B. Solar radiation properties of common membrane roofs used in building structures[J]. Materials & Design, 2016, 105: 268-277. |
[4] | TIAN G J, FAN Y S. Analysis of solar radiation heat transfer of architectural fabric membrane material[J]. Journal of Engineered Fibers and Fabrics, 2020, 15(2): 1-6. |
[5] |
HU J H, CHEN W J. Thermal characteristics and comfort assessment of enclosed large-span membrane stadiums[J]. Applied Energy, 2018, 229: 728-735.
doi: 10.1016/j.apenergy.2018.08.033 URL |
[6] |
TIAN G J, FAN Y S. Indoor thermal environment of thin membrane structure buildings: A review[J]. Energy and Buildings, 2021, 234: 110704.
doi: 10.1016/j.enbuild.2020.110704 URL |
[7] |
ZHANG T T, TAN Y F. The application of air layers in building envelopes: A review[J]. Applied Energy, 2016, 165: 707-734.
doi: 10.1016/j.apenergy.2015.12.108 URL |
[8] |
TANG H D, ZHANG T. On-site measured performance of a mechanically ventilated double etfe cushion structure in an aquatics center[J]. Solar Energy, 2018, 162: 289-299.
doi: 10.1016/j.solener.2018.01.042 URL |
[9] |
SUO H, ANGELOTTI A. Thermal-physical behavior and energy performance of air-supported membranes for sports halls: A comparison among traditional and advanced building envelopes[J]. Energy and Buildings, 2015, 109: 35-46.
doi: 10.1016/j.enbuild.2015.10.011 URL |
[10] | KOSTIC D, MILOSEVIC V. Influence of single and double membrane roofs on thermal behaviour of enclosed space[J]. Tehnicki Vjesnik-Technical Gazette, 2018, 25: 188-196. |
[11] |
GHANI S, ELBIALY E A. Thermal performance of sta-dium’s field of play in hot climates[J]. Energy and Buildings, 2017, 139: 702-718.
doi: 10.1016/j.enbuild.2017.01.059 URL |
[12] |
FANTUCCI S, FENOGLIO E. Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings[J]. Science and Technology for the Built Environment, 2019, 25(9): 1178-1186.
doi: 10.1080/23744731.2019.1634931 URL |
[13] |
GAO T, IHARA T. Perspective of aerogel glazings in energy efficient buildings[J]. Building and Environment, 2016, 95: 405-413.
doi: 10.1016/j.buildenv.2015.10.001 URL |
[14] |
BURATTI C, BELLONI E. Aerogel glazing systems for building applications: A review[J]. Energy and Buildings, 2021, 231: 110587.
doi: 10.1016/j.enbuild.2020.110587 URL |
[15] | SADINENI S B, MADALA S. Passive building energy savings: A review of building envelope components[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8): 3617-3631. |
[1] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[2] | 赵一霖, 严立, 来霄毅, 马禄创, 侯凌霄, 叶哲霄. 新一代四机并联火箭发动机喷流热环境数值研究[J]. 空天防御, 2023, 6(1): 109-116. |
[3] | 阴悦a,胡建辉a,b,c,陈务军a,李一坡a. 封闭式膜结构体育馆冬季热环境测试[J]. 上海交通大学学报(自然版), 2018, 52(11): 1452-1458. |
[4] | 王子通,马宁,周岱,孙颖昊. 伞形膜结构风压和风振模拟与分析[J]. 上海交通大学学报(自然版), 2014, 48(11): 1562-1567. |
[5] | 周岱,钱锟,马骏,韩兆龙,洪荣华,季清. 漏斗形开敞式膜结构的风致振动效应分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 862-866. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||