上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (7): 899-909.doi: 10.16183/j.cnki.jsjtu.2022.113
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
收稿日期:
2022-04-18
修回日期:
2022-05-31
接受日期:
2022-06-23
出版日期:
2023-07-28
发布日期:
2023-07-28
通讯作者:
李伟鹏
E-mail:liweipeng@sjtu.edu.cn
作者简介:
廖屹峰(1998-),硕士生,从事多孔介质内孔隙尺度的流动研究.
基金资助:
Received:
2022-04-18
Revised:
2022-05-31
Accepted:
2022-06-23
Online:
2023-07-28
Published:
2023-07-28
Contact:
LI Weipeng
E-mail:liweipeng@sjtu.edu.cn
摘要:
在气体扩散层(GDL)生产过程中,疏水黏合处理和装配压缩变形导致GDL孔隙结构和渗透特性发生变化.首先基于随机重构算法,建立一种添加黏合物质和施加不均匀压缩的GDL建模方法;然后利用格子玻尔兹曼数值仿真气体单相流动,研究黏合物质与压缩形变对燃料电池GDL孔隙结构和气体渗透特性的影响规律.计算结果表明:黏合物质与压缩形变均会导致气体扩散小尺寸孔隙结构占比增大,整体孔隙率减小;GDL的渗透率变化趋势与孔隙率一致,均降低,变化规律基本符合理论预测关系;当孔隙率相近时,压缩变形是导致的渗透率降低的关键因素.
中图分类号:
廖屹峰, 李伟鹏. 黏合物质与压缩变形对燃料电池气体扩散层孔隙结构和气体渗透特性的影响[J]. 上海交通大学学报, 2023, 57(7): 899-909.
LIAO Yifeng, LI Weipeng. Effect of Binder and Compression on Pore Structure and Gas Permeability of Gas Diffusion Layer in PEMFC[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 899-909.
[1] |
WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007.
doi: 10.1016/j.apenergy.2010.09.030 URL |
[2] |
ROSLI R E, SULONG A B, DAUD W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314.
doi: 10.1016/j.ijhydene.2016.06.211 URL |
[3] |
ZHAO Y Q, MAO Y J, ZHANG W X, et al. Reviews on the effects of contaminations and research methodologies for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23174-23200.
doi: 10.1016/j.ijhydene.2020.06.145 URL |
[4] |
CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells-A review[J]. Journal of Power Sources, 2009, 194(1): 146-160.
doi: 10.1016/j.jpowsour.2009.04.005 URL |
[5] |
WANG X L, ZHANG H M, ZHANG J L, et al. A bi-functional micro-porous layer with composite carbon black for PEM fuel cells[J]. Journal of Power Sources, 2006, 162(1): 474-479.
doi: 10.1016/j.jpowsour.2006.06.064 URL |
[6] | IONESCU V. Finite element method modelling of a high temperature PEM fuel cell[J]. Romanian Journal of Physics, 2014, 59(3): 285-294. |
[7] |
DAINO M M, KANDLIKAR S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5180-5189.
doi: 10.1016/j.ijhydene.2011.12.050 URL |
[8] |
BURGANOS V N, SKOURAS E D, KALARAKIS A N. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives[J]. Journal of Power Sources, 2017, 365: 179-189.
doi: 10.1016/j.jpowsour.2017.08.070 URL |
[9] |
THIEDMANN R, HARTNIG C, MANKE I, et al. Local structural characteristics of pore space in GDLs of PEM fuel cells based on geometric 3D Graphs[J]. Journal of The Electrochemical Society, 2009, 156(11): B1339.
doi: 10.1149/1.3222737 URL |
[10] |
GAISELMANN G, FRONING D, TÖTZKE C, et al. Stochastic 3D modeling of non-woven materials with wet-proofing agent[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8448-8460.
doi: 10.1016/j.ijhydene.2013.04.144 URL |
[11] |
NITTA I, HOTTINEN T, HIMANEN O, et al. Inhomogeneous compression of PEMFC gas diffusion layer[J]. Journal of Power Sources, 2007, 171(1): 26-36.
doi: 10.1016/j.jpowsour.2006.11.018 URL |
[12] |
CHEN G J, XU Q, XUAN J, et al. Numerical study of inhomogeneous deformation of gas diffusion layers on proton exchange membrane fuel cells performance[J]. Journal of Energy Storage, 2021, 44: 103486.
doi: 10.1016/j.est.2021.103486 URL |
[13] |
CHIPPAR P, O K, KANG K, et al. A numerical investigation of the effects of GDL compression and intrusion in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2012, 37(7): 6326-6338.
doi: 10.1016/j.ijhydene.2011.04.154 URL |
[14] |
LI W Z, YANG W W, ZHANG W Y, et al. Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22194-22209.
doi: 10.1016/j.ijhydene.2019.06.187 URL |
[15] |
BAO Z M, LI Y N, ZHOU X, et al. Transport properties of gas diffusion layer of proton exchange membrane fuel cells: Effects of compression[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121608.
doi: 10.1016/j.ijheatmasstransfer.2021.121608 URL |
[16] |
RAMA P, LIU Y, CHEN R, et al. A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers[J]. Fuel Cells, 2011, 11(2): 274-285.
doi: 10.1002/fuce.201000037 URL |
[17] | 高源, 吴晓燕, 孙严博. 新型随机重构微孔隙介质模型与扩散特性[J]. 同济大学学报(自然科学版), 2017, 45(1): 109-118. |
GAO Yuan, WU Xiaoyan, SUN Yanbo. Characterization and diffusion in reconstructed gas diffusion layer based on stochastic method[J]. Journal of Tongji University (Natural Science), 2017, 45(1): 109-118. | |
[18] |
ARVAY A, YLI-RANTALA E, LIU C H, et al. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells-A review[J]. Journal of Power Sources, 2012, 213: 317-337.
doi: 10.1016/j.jpowsour.2012.04.026 URL |
[19] | FADZILLAH D M, ROSLI M I, TALIB M Z M, et al. Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells[J]. Renewable & Sustainable Energy Reviews, 2017, 77: 1001-1009. |
[20] |
ZENYUK I V, PARKINSON D Y, HWANG G, et al. Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography[J]. Electrochemistry Communications, 2015, 53: 24-28.
doi: 10.1016/j.elecom.2015.02.005 URL |
[21] | OZDEN A, SHAHGALDI S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells-With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy & Combustion Science, 2019, 74: 50-102. |
[22] | XIA F J, WU X L, LIU P S. Methods for determining aperture of porous materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(41): 8183-8188. |
[23] |
DULLIEN F A L. Single phase flow through porous media and pore structure[J]. The Chemical Engineering Journal, 1975, 10(1): 1-34.
doi: 10.1016/0300-9467(75)88013-0 URL |
[24] | 何玉松, 白敏丽, 郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064. |
HE Yusong, BAI Minli, HAO Liang. Pore structure and pore scale simulation of permeability of micro-porous layer in PEM fuel cell[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1053-1064. | |
[25] | NABOVATI A, LLEWELLIN E W, SOUSA A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[J]. Composites Part A: Applied Science & Manufacturing, 2009, 40(6/7): 860-869. |
[26] |
KOPONEN A, KANDHAI D, HELLÉN E, et al. Permeability of three-dimensional random fiber webs[J]. Physical Review Letters, 1998, 80(4): 716-719.
doi: 10.1103/PhysRevLett.80.716 URL |
[27] | MATHIAS M F, ROTH J, FLEMING J, et al. Handbook of Fuel Cells-Fundamentals, technology and applications[M]. New York: John Wiley & Sons, 2003: 517-537. |
[1] | 刘可真, 陈雪鸥, 陈镭丹, 林铮, 沈赋. 光伏发电系统动态离散等值模型研究[J]. 上海交通大学学报, 2023, 57(4): 412-421. |
[2] | 路林海, 武朝军, 孙捷城, 才昊, 叶冠林. 强竖向渗透济南红黏土的微观孔隙特征及CT渗流试验[J]. 上海交通大学学报, 2022, 56(9): 1218-1226. |
[3] | 何玉松,白敏丽,郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064. |
[4] | 荣富, 廖晨聪, 童大贵, 周香莲. 波浪作用下渗透率各向异性的海床液化分析[J]. 上海交通大学学报, 2019, 53(1): 93-99. |
[5] | 邵昊舒,蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报(自然版), 2018, 52(10): 1166-1177. |
[6] | 金哲权, 田波, 王丽伟, 王如竹. 活性炭/膨胀石墨固化混合吸附剂导热和渗透性能测试[J]. 上海交通大学学报(自然版), 2011, 45(06): 866-869. |
[7] | 陈彬,卢晨,林栋樑,曾小勤. Mg97Y2Zn1合金高温热压缩流动行为[J]. 上海交通大学学报(自然版), 2010, 44(05): 593-0597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||