上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (2): 127-137.doi: 10.16183/j.cnki.jsjtu.2021.448
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
• 船舶海洋与建筑工程 • 下一篇
何文君1, 苏捷1, 周岱1, 韩兆龙1,2(), 包艳1, 赵永生1,2, 许玉旺1, 涂佳黄3
收稿日期:
2021-11-07
修回日期:
2021-12-15
接受日期:
2021-12-23
出版日期:
2023-02-28
发布日期:
2023-03-01
通讯作者:
韩兆龙
E-mail:han.arkey@sjtu.edu.cn.
作者简介:
何文君(1997-),硕士生,从事垂直轴风力机结构减振研究.
基金资助:
HE Wenjun1, SU Jie1, ZHOU Dai1, HAN Zhaolong1,2(), BAO Yan1, ZHAO Yongsheng1,2, XU Yuwang1, TU Jiahuang3
Received:
2021-11-07
Revised:
2021-12-15
Accepted:
2021-12-23
Online:
2023-02-28
Published:
2023-03-01
Contact:
HAN Zhaolong
E-mail:han.arkey@sjtu.edu.cn.
摘要:
大型海洋垂直轴风力机的研究对发展海洋风能具有重要意义,研究大型垂直轴风力机的合理支撑结构形式对风力发电结构安全至关重要.基于变删除率的双向渐进结构优化(BESO)算法,对大型海洋垂直轴风力机进行支撑结构优化,并通过风力机的动力响应特性分析,验证结构优化方法的可靠性.结果表明:反比例型变删除率的BESO算法能有效改善优化迭代速率,适用于垂直轴风力机的支撑结构优化设计;相比于初始结构,拓扑出的新结构模型在风荷载作用下的风致动力响应显著降低.研究成果可用于垂直轴风力机支撑结构设计优化.
中图分类号:
何文君, 苏捷, 周岱, 韩兆龙, 包艳, 赵永生, 许玉旺, 涂佳黄. 基于BESO算法的大型海洋垂直轴风力机支撑结构优化[J]. 上海交通大学学报, 2023, 57(2): 127-137.
HE Wenjun, SU Jie, ZHOU Dai, HAN Zhaolong, BAO Yan, ZHAO Yongsheng, XU Yuwang, TU Jiahuang. Supporting Structure Optimization of Offshore Large-Scale Vertical Axis Wind Turbine Based On BESO Algorithm[J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 127-137.
[1] | WANKHADE Y M, BOLKE M R, KANADE S A, et al. A review of wind energy technology[J]. Modern Engineering Research, 2016, 6(2): 2249-6645. |
[2] | HENDERSON A R. Offshore wind in Europe[J]. Refocus, 2002, 3(2): 14-17. |
[3] |
ZAMANI M, NAZARI S, MOSHIZI S A, et al. Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine[J]. Energy, 2016, 116: 1243-1255.
doi: 10.1016/j.energy.2016.10.031 URL |
[4] |
FIEDLER A J, TULLIS S. Blade offset and pitch effects on a high solidity vertical axis wind turbine[J]. Wind Engineering, 2009, 33(3): 237-246.
doi: 10.1260/030952409789140955 URL |
[5] |
ROLIN V F C, PORTÉ-AGEL F. Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow[J]. Renewable Energy, 2018, 118: 1-13.
doi: 10.1016/j.renene.2017.10.105 URL |
[6] |
MACPHEE D W, BEYENE A. Fluid-structure interaction analysis of a morphing vertical axis wind turbine[J]. Journal of Fluids and Structures, 2016, 60: 143-159.
doi: 10.1016/j.jfluidstructs.2015.10.010 URL |
[7] |
BALDUZZI F, BIANCHINI A, CARNEVALE E A, et al. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building[J]. Applied Energy, 2012, 97: 921-929.
doi: 10.1016/j.apenergy.2011.12.008 URL |
[8] |
ZHANG B S, SONG B W, MAO Z Y, et al. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J]. Energy, 2017, 121: 341-355.
doi: 10.1016/j.energy.2017.01.004 URL |
[9] | 孟珣, 李华军, 包兴先. 采油平台在海上风电支撑体系中的应用研究[J]. 应用基础与工程科学学报, 2010, 18(4): 626-636. |
MENG Xun, LI Huajun, BAO Xingxian. Feasible study on oil jacket platforms in supporting structural systems of OWTs[J]. Journal of Basic Science and Engineering, 2010, 18(4): 626-636. | |
[10] | 金浩, 胡以怀, 冯是全. 垂直轴风力机在风力发电中的应用现状及展望[J]. 环境工程, 2015, 33 (Sup.1): 1033-1038. |
JIN Hao, HU Yihuai, FENG Shiquan. Current situation and prospect on vertical axis wind turbine in wind power generation[J]. Environmental Engineering, 2015, 33 (Sup.1): 1033-1038. | |
[11] | HENDERSON AR, WITCHER D, MORGAN C A. Floating support structures enabling new markets for offshore wind energy[C/OL]// European Wind Energy Conference 2009. (2009-03-16)[2021-11-08]. https://www.researchgate.net/profile/Andrew-Henderson/publication/228523769_Floating_support_structures_enabling_new_markets_for_offshore_wind_energy/links/550c3e6f0cf212874160852f/Floating-support-structures-enabling-new-markets-for-offshore-wind-energy.pdf. |
[12] | TANG Y G, HU J, LIU L Q. Study on the dynamic response for floating foundation of offshore wind turbine[C]// Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, Netherlands: ASME, 2011: 929-933. |
[13] | 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36(1): 19-26. |
LIU Liqin, HAN Yuanzhao, XIAO Changshui, et al. Research on dynamic response of offshore wind turbine system based on new semisubmersible-spar hybrid floating foundation[J]. The Ocean Engineering, 2018, 36(1): 19-26. | |
[14] | DWIYANTORO A, YUWONO T, SUPHANDANI V. Structural design optimization of vertical axis wind turbine type darrieus-savonius bambang[J]. ARPN Journal of Engineering and Applied Sciences, 2016, 11(2): 1073-1077. |
[15] |
HARA Y, HORITA N, YOSHIDA S, et al. Numerical analysis of effects of arms with different cross-sections on straight-bladed vertical axis wind turbine[J]. Energies, 2019, 12(11): 2106.
doi: 10.3390/en12112106 URL |
[16] |
ISLAM M, FARTAJ A, CARRIVEAU R. Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine[J]. Wind Engineering, 2008, 32: 491-507.
doi: 10.1260/030952408786411903 URL |
[17] |
LI Y, CALISAL S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy, 2010, 35(10): 2325-2334.
doi: 10.1016/j.renene.2010.03.002 URL |
[18] | 何大伟, 吴国庆, 陆彬, 等. 垂直轴风力发电机主轴结构优化设计[J]. 机械设计与制造, 2018(2): 199-201. |
HE Dawei, WU Guoqing, LU Bin, et al. Vertical axis wind turbine spindle structure optimization design[J]. Machinery Design & Manufacture, 2018(2): 199-201. | |
[19] | 高振勋, 蒋崇文, 唐金龙, 等. 多层塔式H型立轴风机的性能分析[J]. 电力与能源, 2011, 32(5): 402-407. |
GAO Zhenxun, JIANG Chongwen, TANG Jinlong, et al. Performance evaluation of the multi-stage tower-type vertical-axis wind turbine[J]. Power & Energy, 2011, 32(5): 402-407. | |
[20] | 蒋周伟. H型垂直轴风力发电机风振特性与结构优化研究[D]. 武汉: 武汉理工大学, 2012. |
JIANG Zhouwei. Study on vibration characteristics and structure optimization of H-type wind power generator with vertical axis[D]. Wuhan: Wuhan University of Technology, 2012. | |
[21] |
文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199.
doi: 10.3901/JME.2020.10.191 |
WEN Yongpeng, ZHENG Xiaoming, WU Aizhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199.
doi: 10.3901/JME.2020.10.191 |
|
[22] | 才琪, 冯若强. 基于改进双向渐进结构优化法的桁架结构拓扑优化[J]. 建筑结构学报, 2022, 43(4): 68-76. |
CAI Qi, FENG Ruoqiang. Topology optimization of truss structure based on improved bi-directional evolutionary structural optimization method[J]. Journal of Building Structures, 2022, 43(4): 68-76. | |
[23] | 刘昆, 郭德松, 王仁华, 等. 基于改进BESO方法的多工况船体开孔孔形优化[J]. 中国海洋平台, 2021, 36(4): 1-8. |
LIU Kun, GUO Desong, WANG Renhua, et al. Shape optimization of hull structure hole opening under multiple conditions based on improved BESO method[J]. China Offshore Platform, 2021, 36(4): 1-8. | |
[24] |
HAND B, CASHMAN A. Conceptual design of a large-scale floating offshore vertical axis wind turbine[J]. Energy Procedia, 2017, 142: 83-88.
doi: 10.1016/j.egypro.2017.12.014 URL |
[25] | 刘利琴, 赵海祥, 袁瑞, 等. H型浮式垂直轴风力机刚—柔耦合多体动力学建模及仿真[J]. 海洋工程, 2018, 36(3): 1-9. |
LIU Liqin, ZHAO Haixiang, YUAN Rui, et al. Modeling and simulation of H-type floating VAWT on rigid-flexible coupling and multi-body dynamics[J]. The Ocean Engineering, 2018, 36(3): 1-9.
doi: 10.1016/j.oceaneng.2008.12.005 URL |
|
[26] |
TRAN T T, KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable Energy, 2016, 92: 244-261.
doi: 10.1016/j.renene.2016.02.021 URL |
[27] |
CHEN Z W, WANG X D, GUO Y Z, et al. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions[J]. Renewable Energy, 2021, 163: 1849-1870.
doi: 10.1016/j.renene.2020.10.096 URL |
[28] | 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6): 729-735. |
ZHANG Jian, YANG Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6): 729-735. | |
[29] | 雷航. 垂直轴风力机非定常空气动力特性数值模拟分析[D]. 上海: 上海交通大学, 2019. |
LEI Hang. Numerical simulation of the unsteady aerodynamic performance for vertical axis wind turbines[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[30] | 杨梦姚, 毛璐璐, 韩兆龙, 等. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
YANG Mengyao, MAO Lulu, HAN Zhaolong, et al. Wind vibration and vibration reduction of a H-rotor type three-bladed vertical axis wind turbine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 347-356. | |
[31] |
KATONA M C, ZIENKIEWICZ O C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21(7): 1345-1359.
doi: 10.1002/nme.1620210713 URL |
[32] |
WANG K, MOAN T, HANSEN M O L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J]. Wind Energy, 2016, 19(10): 1853-1870.
doi: 10.1002/we.1955 URL |
[33] | 张森文, 曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报, 2000, 17(1): 94-97. |
ZHANG Senwen, CAO Kaibin. Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-97. | |
[34] |
HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049.
doi: 10.1016/j.finel.2007.06.006 URL |
[35] | 罗静, 张大可, 李海军, 等. 基于一种动态删除率的ESO方法[J]. 计算力学学报, 2015, 32(2): 274-279. |
LUO Jing, ZHANG Dake, LI Haijun, et al. ESO method based on a kind of dynamic deletion rate[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 274-279. | |
[36] | 荣见华, 姜节胜, 胡德文, 等. 基于应力及其灵敏度的结构拓扑渐进优化方法[J]. 力学学报, 2003, 35(5): 584-591. |
RONG Jianhua, JIANG Jiesheng, HU Dewen, et al. A structural topology evolutionary optimization method based on stresses and their sensitivity[J]. Acta Mechanica Sinica, 2003, 35(5): 584-591. |
[1] | 占玲玉, 何文君, 周岱, 韩兆龙, 朱宏博, 张凯, 涂佳黄. 基于BESO算法的高桩承台式水平轴风力机支撑结构优化[J]. 上海交通大学学报, 2023, 57(8): 939-947. |
[2] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[3] | 曲晓奇, 李红涛, 唐广银, 杜海越, 杨林林. 海上浮式风力机动力响应分析与数值仿真关键技术研究[J]. 海洋工程装备与技术, 2023, 10(2): 72-78. |
[4] | 毕建巍, 苏雷, 解立波, 张昱, 凌贤长. 波浪作用下液化场地高桩码头动力响应试验研究[J]. 上海交通大学学报, 2023, 57(11): 1442-1454. |
[5] | 牛振宇, 刘林芽, 秦佳良, 左志远. 减振垫层温频变动力性能对无砟轨道振动特性影响[J]. 上海交通大学学报, 2022, 56(9): 1238-1246. |
[6] | 秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158. |
[7] | 邱杰凯, 丁肇伟, 宋春雨, 陈龙珠. 成层广义Gibson地基中桩的水平动力响应[J]. 上海交通大学学报, 2022, 56(4): 431-442. |
[8] | 戴孟祎, 张志豪, 涂佳黄, 韩兆龙, 周岱, 朱宏博. 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报, 2022, 56(12): 1619-1629. |
[9] | 王锐, 薛鸿祥, 袁昱超, 唐文勇. 高温环境下海洋平台防爆墙结构冲击动力响应特性研究[J]. 上海交通大学学报, 2021, 55(8): 968-975. |
[10] | 刘晨晨, 张琪, 李明广, 周香莲, 黎蔚杰. 波浪与地震荷载共同作用下桩的动力响应[J]. 上海交通大学学报, 2021, 55(6): 638-644. |
[11] | 杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
[12] | 曹宇, 韩兆龙, 周岱, 雷航. 对转式垂直轴风力机气动性能研究[J]. 上海交通大学学报, 2021, 55(2): 141-148. |
[13] | 王威, 陆思逵, 杨成忠, 冯青松. 有砟客专路基结构参数的优化研究[J]. 上海交通大学学报, 2021, 55(1): 48-55. |
[14] | 阳杰, 何炎平, 孟龙, 赵永生, 吴浩宇. 极限海况下6 MW单柱型浮式风力机耦合动力响应[J]. 上海交通大学学报, 2021, 55(1): 21-31. |
[15] | 李召伦,王小静,沈轶钒,陈超,董健. 滑动轴承-转子系统中金属阻尼器的减振特性[J]. 上海交通大学学报(自然版), 2018, 52(5): 612-619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||