上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1221-1230.doi: 10.16183/j.cnki.jsjtu.2022.149
所属专题: 《上海交通大学学报》2023年“航空航天”专题
• 航空航天 • 上一篇
郑诚毅1, 杜旭之1, 东乔天2, 杨志刚3, 熊兵4, 徐毅4, 吴凌昊4, 金哲岩1,3()
收稿日期:
2022-05-07
修回日期:
2022-06-19
接受日期:
2022-06-30
出版日期:
2023-09-28
发布日期:
2023-09-27
通讯作者:
金哲岩
E-mail:zheyanjin@tongji.edu.cn
作者简介:
郑诚毅(1993-),博士生,主要研究方向为飞行器结冰机理.
基金资助:
ZHENG Chengyi1, DU Xuzhi1, DONG Qiaotian2, YANG Zhigang3, XIONG Bing4, XU Yi4, WU Linghao4, JIN Zheyan1,3()
Received:
2022-05-07
Revised:
2022-06-19
Accepted:
2022-06-30
Online:
2023-09-28
Published:
2023-09-27
Contact:
JIN Zheyan
E-mail:zheyanjin@tongji.edu.cn
摘要:
粗糙冰会改变翼型前缘轮廓从而影响翼型整体的气动特性.研究过冷大水滴结冰条件下产生的粗糙冰对翼型绕流流场结构的影响可以为飞机的防/除冰设计提供参考.利用粒子图像测速技术在低速直流风洞内对表面覆盖粗糙冰的翼型模型的绕流流场结构开展了详细的实验测量研究,主要探究了粗糙冰对涡量和标准化雷诺应力分布的影响.研究参数包括雷诺数、粗糙冰的粗糙度和翼型的攻角.结果表明:随着雷诺数增大,带冰翼型尾流处的涡量范围和数值增大,标准化雷诺应力值略微减小;粗糙冰的存在降低了翼型近壁面处气流速度,增加了尾流的涡量并严重影响切应力分布;与光滑翼型相比,粗糙冰会使气流提前分离,且分离泡内的气流速度波动更剧烈.
中图分类号:
郑诚毅, 杜旭之, 东乔天, 杨志刚, 熊兵, 徐毅, 吴凌昊, 金哲岩. 不同参数对带粗糙冰翼型绕流流场结构影响的实验研究[J]. 上海交通大学学报, 2023, 57(9): 1221-1230.
ZHENG Chengyi, DU Xuzhi, DONG Qiaotian, YANG Zhigang, XIONG Bing, XU Yi, WU Linghao, JIN Zheyan. Experimental Study of Influence of Different Parameters on Flow Field Structures Around an Airfoil Covered with Rough Ice[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1221-1230.
[1] | SULLIVAN J. The effects of inclement weather on airline operations[C]//AIAA 27th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1989: 797. |
[2] | MANDEL E. Severe weather-impact on aviation and FAA programs in response[C]//AIAA 27th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1989: 794. |
[3] |
LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
doi: 10.1016/S0376-0421(01)00018-5 URL |
[4] | CAO Y, WU Z, SU Y, et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences, 2014, 74(1183): 963-979. |
[5] | BROEREN A, LAMARRE C, BRAGG M, et al. Characteristics of SLD ice accretions on airfoils and their aerodynamic effects[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2005: 75. |
[6] |
SHIN J. Characteristics of surface roughness associated with leading edge ice accretion[J]. Journal of Aircraft, 1996, 33(2): 316-321.
doi: 10.2514/3.46940 URL |
[7] | ANDERSON D N, SHIN J. Characterization of ice roughness from simulated icing encounters[C]//35th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1997: 52. |
[8] | KERHO M F. Effect of large distributed roughness near an airfoil leading edge on boundary-layer development and transition[D]. USA: University of Illinois, 1995. |
[9] | CUMMINGS M J. Airfoil boundary-layer transition due to large isolated 3-D roughness elements in a favorable pressure gradient[D]. USA: University of Illinois, 1995. |
[10] |
CUMMINGS M J, BRAGG M B. Boundary-layer transition due to isolated 3-D roughness on an airfoil leading edge[J]. AIAA Journal, 2015, 34(9): 1949-1952.
doi: 10.2514/3.13333 URL |
[11] | SMITH A, KAUPS K. Aerodynamic surface roughness and imperfections[C]//National Business Aircraft Meeting and Engineering Display. USA: SAE International, 1968: 680198. |
[12] | JACKSON D G. Effect of simulated ice and residual ice roughness on the performance of a natural laminar flow airfoil[D]. USA: University of Illinois, 1999. |
[13] | 黄冉冉, 李栋, 刘藤, 等. 冰形表面粗糙度对翼型的失速特性影响分析[J]. 空气动力学学报, 2021, 39(1): 59-65. |
HUANG Ranran, LI Dong, LIU Teng, et al. The effect of ice accretion roughness on airfoil stall characteristics[J]. Acta Aerodynamica Sinica, 2021, 39(1): 59-65. | |
[14] | 霍西恒, 常士楠. 翼型表面粗糙度对结冰的影响分析[J]. 航空工程进展, 2012, 3(2): 156-161. |
HUO Xiheng, CHANG Shinan. Analysis of wing surface roughness influence on icing accretion[J]. Advances in Aeronautical Science and Engineering, 2012, 3(2): 156-161. | |
[15] | 常士楠, 王超, 赵媛媛, 等. 结冰表面粗糙度预测与分析[J]. 空气动力学学报, 2014, 32(5): 660-667. |
CHANG Shinan, WANG Chao, ZHAO Yuanyuan, et al. Modeling of roughness dimension and distribution on the icing surface[J]. Acta Aerodynamica Sinica, 2014, 32(5): 660-667. | |
[16] | MCCLAIN S T, REED D, VARGAS M, et al. Ice roughness in short duration SLD icing events[C]//6th AIAA Atmospheric & Space Environments Conference. Atlanta, GA, USA: AIAA, 2014: 2330. |
[17] | MILSCH R. Systematische untersuchung uber den einfluss der rauhigkeit von verdichterschaufeln auf den gitterwirkungsgrad[D]. Germany: Universität Hannover, 1971. |
[18] | BOER J, HENGST J V. Aerodynamic degradation due to distributed roughness on high lift configuration[C]//31st Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1993: 28. |
[19] |
DEES J E, BOGARD D G. Effects of regular and random roughness on the heat transfer and skin friction coefficient on the suction side of a gas turbine vane[J]. Journal of Turbomachinery, 2008, 130(4): 041012.
doi: 10.1115/1.2812338 URL |
[20] | 高磊. 表面粗糙度对压气机叶栅性能影响的实验研究[D]. 北京: 中国科学院研究生院, 2015. |
GAO Lei. Experimental study of surface roughness effects on compressor cascade performance[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
[21] | 孙爽, 雷志军, 卢新根, 等. 基于表面粗糙度的超高负荷低压涡轮叶片附面层控制[J]. 航空动力学报, 2016, 31(4): 836-846. |
SUN Shuang, LEI Zhijun, LU Xingen, et al. Boundary layer control of ultra-high-lift low pressure turbine blade with surface roughness[J]. Journal of Aerospace Power, 2016, 31(4): 836-846. | |
[22] | HOERNER S F, BORST H V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift[M]. Brick Town, NJ, USA: Hoerner Fluid Dynamics, 1975: 4-19. |
[23] | BROEREN A P, LEE S, WOODARD B, et al. Independent effects of Reynolds and Mach numbers on the aerodynamics of an iced swept wing[C]//Atmospheric & Space Environments Conference. Atlanta, Georgia, USA: AIAA, 2018: 3492. |
[24] | RAFAEL S R, THIAGO B, RODRIGO S C.Aerodynamic simulation of artificial scallop ice shapes on NACA 23012 airfoil[C]//AIAA SCITECH 2022 Forum. San Diego, CA & Virtual, USA: AIAA, 2022: 0432. |
[1] | 姚汝林, 樊奇东, 余龙, 汪学锋. 基于重叠网格方法的中型邮轮减摇鳍数值和试验分析[J]. 上海交通大学学报, 2023, 57(S1): 178-184. |
[2] | 季鹏翔, 艾万政, 丁天明. 孔板后压力恢复长度的影响因数定量关系[J]. 上海交通大学学报, 2022, 56(8): 1051-1056. |
[3] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[4] | 梁伟, 张鑫, 赵文龙, 李欣, 段旭. 亚跨声速大攻角条件下细长体外形侧向喷流气动干扰研究[J]. 空天防御, 2022, 5(3): 38-43. |
[5] | 王方剑, 宋玉辉, 刘金, 秦汉, 陈兰. 细长体亚跨声速超大攻角复杂气动特性研究[J]. 空天防御, 2022, 5(3): 27-37. |
[6] | 王浩凝, 唐胜景, 郭杰, 黄繁. 带有动态攻角剖面的时间约束再入制导[J]. 空天防御, 2021, 4(1): 71-76. |
[7] | 韦亚利, 殷玮, 刘印田, 王鑫, 胡春朝. 多约束下的敏捷导弹大离轴转弯规律研究[J]. 空天防御, 2020, 3(3): 96-102. |
[8] | 梁笑阳,马宁,刘晗,顾解忡. 回转体潜器在循环水槽中垂直面大攻角操纵性试验[J]. 上海交通大学学报, 2019, 53(12): 1395-1403. |
[9] | 姚慧岚, 张怀新. 较低雷诺数下ITTC尺度效应换算方法的改进[J]. 上海交通大学学报, 2019, 53(1): 35-41. |
[10] | 高云1, 2,王盟浩1,宗智3,邹丽3,彭庚1. 高雷诺数时分离盘长度对圆柱绕流特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 504-. |
[11] | 栗夫园,党建军,张宇文. 锥形空化器的流体动力特性及其影响因素[J]. 上海交通大学学报(自然版), 2016, 50(02): 246-250. |
[12] | 徐玺,羌晓青,滕金芳. 基于四象限法的跨声速压气机非设计点损失分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1416-1421. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||