上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (6): 719-727.doi: 10.16183/j.cnki.jsjtu.2022.014
所属专题: 《上海交通大学学报》2023年“航空航天”专题
收稿日期:
2022-01-17
修回日期:
2022-06-14
接受日期:
2022-07-12
出版日期:
2023-06-28
发布日期:
2023-07-05
通讯作者:
李伟鹏
E-mail:liweipeng@sjtu.edu.cn.
作者简介:
杨 强(1995-),硕士生,从事飞行器设计研究.
基金资助:
Received:
2022-01-17
Revised:
2022-06-14
Accepted:
2022-07-12
Online:
2023-06-28
Published:
2023-07-05
Contact:
LI Weipeng
E-mail:liweipeng@sjtu.edu.cn.
摘要:
为了揭示复杂的流动机理,国内外提出了一系列高阶精度格式,其中加权非线性紧致格式(WCNS)具有良好的激波捕捉能力,已广泛用于复杂流动数值模拟,然而在模拟小尺度流动时分辨率不足、耗散偏大.在WCNS的框架下,借鉴基于目标本质无振荡(TENO)格式的加权策略,将间断检测和模板加权的新方法引入WCNS构造中,发展了一种7阶精度的WCNS7-T格式,通过一维激波管问题和二维黎曼问题等开展算例测试,并与传统的WCNS7-Z格式计算结果进行对比来验证新格式的改善性能.数值实验表明,WCNS7-T格式更好地抑制了间断附近的数值振荡,在提高分辨率和激波捕捉能力的同时也进一步降低了耗散.
中图分类号:
杨强, 李伟鹏. 高精度WCNS格式加权策略改进与数值验证[J]. 上海交通大学学报, 2023, 57(6): 719-727.
YANG Qiang, LI Weipeng. Improvement and Numerical Verification of Weighting Strategy for High Precision WCNS Scheme[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 719-727.
表1
二维欧拉方程的WCNS7-Z 和 WCNS7-T 格式的误差和精度
Nx | WCNS7-Z | WCNS7-T | |||||||
---|---|---|---|---|---|---|---|---|---|
E1 | P1 | E2 | P2 | E1 | P1 | E2 | P2 | ||
102 | 4.34×10-3 | 0.00 | 3.12×10-3 | 0.00 | 2.17×10-3 | 0.00 | 1.47×10-3 | 0.00 | |
202 | 5.74×10-5 | 6.24 | 3.91×10-5 | 6.32 | 1.86×10-5 | 6.87 | 1.02×10-5 | 7.17 | |
402 | 5.41×10-7 | 6.73 | 3.46×10-7 | 6.82 | 1.33×10-7 | 7.13 | 8.08×10-8 | 6.98 | |
802 | 4.17×10-9 | 7.02 | 2.51×10-9 | 7.11 | 8.15×10-10 | 7.35 | 5.46×10-10 | 7.21 | |
1602 | 3.34×10-11 | 6.96 | 1.86×10-11 | 7.08 | 5.98×10-12 | 7.09 | 3.90×10-12 | 7.13 | |
3202 | 2.19×10-13 | 7.25 | 1.43×10-13 | 7.02 | 4.04×10-14 | 7.21 | 3.01×10-14 | 7.02 |
[1] |
HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1997, 135(2): 260-278.
doi: 10.1006/jcph.1997.5713 URL |
[2] |
LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics, 1996, 129(2): 364-382.
doi: 10.1006/jcph.1996.0256 URL |
[3] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1987, 71(1): 231-303.
doi: 10.1016/0021-9991(87)90031-3 URL |
[4] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
doi: 10.1016/0021-9991(88)90177-5 URL |
[5] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
doi: 10.1006/jcph.1996.0130 URL |
[6] |
DENG X, ZHANG H. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
doi: 10.1006/jcph.2000.6594 URL |
[7] |
FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751.
doi: 10.1016/j.jcp.2018.07.043 URL |
[8] |
YE C C, WAN Z H, SUN D J. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids, 2022, 238: 105368.
doi: 10.1016/j.compfluid.2022.105368 URL |
[9] |
BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
doi: 10.1016/j.jcp.2007.11.038 URL |
[10] | MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289. |
[11] |
HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965.
doi: 10.1016/j.jcp.2010.08.019 URL |
[12] |
BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
doi: 10.1006/jcph.2000.6443 URL |
[13] |
GEROLYMOS G A D. SÉNÉCHAL , VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524.
doi: 10.1016/j.jcp.2009.07.039 URL |
[14] |
PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497.
doi: 10.1016/j.jcp.2006.07.009 URL |
[15] |
JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
doi: 10.1016/j.jcp.2009.10.028 URL |
[16] |
DENG X, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91.
doi: 10.1006/jcph.1996.5553 URL |
[17] |
PENG J, LIU S, LI S, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics, 2021, 425: 109902.
doi: 10.1016/j.jcp.2020.109902 URL |
[18] |
ZHANG H, ZHANG F, XU C. Towards optimal high-order compact schemes for simulating compressible flows[J]. Applied Mathematics and Computation, 2019, 355: 221-237.
doi: 10.1016/j.amc.2019.03.001 URL |
[19] | 马燕凯, 刘化勇, 燕振国, 等. 基于 HWCNS 格式的紧致插值方法研究[J]. 计算力学学报, 2015, 32(3): 388-393. |
MA Yankai, LIU Huayong, YAN Zhenguo, et al. Research on compact interpolation method based on HWCNS scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(3): 388-393. | |
[20] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258.
doi: 10.1006/jcph.1997.5705 URL |
[21] |
LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
doi: 10.1006/jcph.1993.1122 URL |
[22] | VAN LEER B. Flux-vector splitting for the Euler equations[J]. Lecture Notes in Physics, 1982, 170(1): 507-512. |
[23] |
HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199.
doi: 10.1016/j.compfluid.2021.105199 URL |
[24] |
EF T, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34.
doi: 10.1007/BF01414629 URL |
[25] |
GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85.
doi: 10.1090/mcom/1998-67-221 URL |
[26] |
WONGA M L, LELEA S K. High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows[J]. Journal of Computational Physics, 2017, 339: 179-209.
doi: 10.1016/j.jcp.2017.03.008 URL |
[27] |
LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. Siam Journal on Scientific Computing, 1998, 19(2): 319-340.
doi: 10.1137/S1064827595291819 URL |
[28] |
ZHANG H, ZHANG F, LIU J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105191.
doi: 10.1016/j.cnsns.2020.105191 URL |
[29] |
SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186(2): 690-696.
doi: 10.1016/S0021-9991(03)00094-9 URL |
[30] |
ZHAO G, SUN M, XIE S, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator[J]. Applied Mathematics and Computation, 2018, 330: 239-253.
doi: 10.1016/j.amc.2018.01.019 URL |
[1] | 沈枫1,竺晓程1,刘鹏寅1,杜朝辉1,陈化2. 无叶扩压器失速的三维可压缩流模型[J]. 上海交通大学学报(自然版), 2011, 45(11): 1725-1730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||