上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1159-1167.doi: 10.16183/j.cnki.jsjtu.2021.185
王志伟1, 何炎平1(), 李铭志1, 仇明2, 黄超1, 刘亚东1
收稿日期:
2021-05-31
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
何炎平
E-mail:hyp110@sjtu.edu.cn
作者简介:
王志伟(1993-),男,山东省聊城市人,博士生,从事气液两相流研究.
基金资助:
WANG Zhiwei1, HE Yanping1(), LI Mingzhi1, QIU Ming2, HUANG Chao1, LIU Yadong1
Received:
2021-05-31
Online:
2022-09-28
Published:
2022-10-09
Contact:
HE Yanping
E-mail:hyp110@sjtu.edu.cn
摘要:
为研究竖直上升管内气液两相流通过90° 弯管后的流动演化特性,分别采用流体体积多相流模型以及Realizable k-ε湍流模型对其进行数值模拟,重点分析气液两相流通过90° 弯管后的速度变化、压力分布、截面含气率及流型演化规律.结果表明:不同气液两相流流型通过 90° 弯管后会产生不同程度的二次流现象,并且切向速度呈现双峰分布,随着流动发展最终耗散成为单峰分布;气液两相流入口速度越大,则弯管外壁面所受压力越大.截面含气率的变化与流型转化相关,泡状流流过弯管后演化成为细长段塞流,截面含气率减小;段塞流、搅动流及环状流通过弯管后演化成为分层-波浪流,截面含气率变化较小.研究结果可为气液两相流输送弯管设计开发及诱导应力预测提供一定的理论支持.
中图分类号:
王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167.
WANG Zhiwei, HE Yanping, LI Mingzhi, QIU Ming, HUANG Chao, LIU Yadong. Numerical Simulation and Flow Pattern Evolution of Gas-Liquid Two-Phase Flow Passing Through a 90° Pipe Bend Based on CFD[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1159-1167.
[1] |
QIAO S X, KONG R, KIM S. Air-water two-phase bubbly flow across 90° vertical elbows Part II: Modeling[J]. International Journal of Heat and Mass Transfer, 2018, 123: 1238-1252.
doi: 10.1016/j.ijheatmasstransfer.2018.04.025 URL |
[2] |
QIAO S X, KIM S. On the prediction of two-phase pressure drop across 90° vertical elbows[J]. International Journal of Multiphase Flow, 2018, 109: 242-258.
doi: 10.1016/j.ijmultiphaseflow.2018.08.002 URL |
[3] | JIANG C Q, GONG Z X. Effect of deflectors on the flow characteristics of a square pipe with a 90° bend[J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(2): 163-169. |
[4] |
QIAO S X, KIM S. Air-water two-phase bubbly flow across 90° vertical elbows. Part I: Experiment[J]. International Journal of Heat and Mass Transfer, 2018, 123: 1221-1237.
doi: 10.1016/j.ijheatmasstransfer.2018.04.023 URL |
[5] |
KIM S, PARK J H, et al. Interfacial structures in horizontal bubbly flow with 90-degree bend[J]. Nuclear Engineering and Design, 2007, 237: 2105-2113.
doi: 10.1016/j.nucengdes.2007.02.007 URL |
[6] |
TALLEY J D, KIM S, GUO T W, et al. Geometric effects of 45-deg elbow in horizontal air-water bubbly flow[J]. Nuclear Technology, 2009, 167(1): 2-12.
doi: 10.13182/NT167-2 URL |
[7] |
SAIDJ F, KIBBOUA R, AZZI A, et al. Experimental investigation of air-water two-phase flow through vertical 90° bend[J]. Experimental Thermal and Fluid Science, 2014, 57: 226-234.
doi: 10.1016/j.expthermflusci.2014.04.020 URL |
[8] |
VIEIRA R E, KESANA N R, MCLAURY B S, et al. Experimental investigation of the effect of 90° standard elbow on horizontal gas-liquid stratified and annular flow characteristics using dual wire-mesh sensors[J]. Experimental Thermal and Fluid Science, 2014, 59: 72-87.
doi: 10.1016/j.expthermflusci.2014.08.001 URL |
[9] |
YADAV M S, WOROSZ T, KIM S, et al. Characterization of the dissipation of elbow effects in bubbly two-phase flows[J]. International Journal of Multiphase Flow, 2014, 66: 101-109.
doi: 10.1016/j.ijmultiphaseflow.2014.07.012 URL |
[10] |
LIU Y, MIWA S, HIBIKI T, et al. Experimental study of internal two-phase flow induced fluctuating force on a 90° elbow[J]. Chemical Engineering Science, 2012, 76: 173-187.
doi: 10.1016/j.ces.2012.04.021 URL |
[11] |
SALCUDEAN M, CHUN J H, GROENEVELD D C. Effect of flow obstructions on the flow pattern transitions in horizontal two-phase flow[J]. International Journal of Multiphase Flow, 1983, 9(1): 87-90.
doi: 10.1016/0301-9322(83)90008-3 URL |
[12] |
DEENDARLIANTO, ANDRIANTO M, WIDYA-PARAGA A, et al. CFD Studies on the gas-liquid plug two-phase flow in a horizontal pipe[J]. Journal of Petroleum Science and Engineering, 2016, 147: 779-787.
doi: 10.1016/j.petrol.2016.09.019 URL |
[13] | 胡志华, 杨燕华, 周芳德. 水平管内气液两相环状流形成机理实验研究[J]. 上海交通大学学报, 2005, 39(5): 823-826. |
HU Zhihua, YANG Yanhua, ZHOU Fangde. Experimental investigation on the formation of gas-liquid two phase flow in horizontal pipes[J]. Journal of Shanghai Jiao Tong University, 2005, 39(5): 823-826. | |
[14] | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
[15] |
SAIDJ F, HASAN A, BOUYAHIAOUI H, et al. Experimental study of the characteristics of an upward two-phase slug flow in a vertical pipe[J]. Progress in Nuclear Energy, 2018, 108: 428-437.
doi: 10.1016/j.pnucene.2018.07.001 URL |
[1] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[2] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[3] | 张宇, 王晓亮. 基于径向点插值方法的柔性螺旋桨气动弹性模拟[J]. 上海交通大学学报, 2020, 54(9): 924-934. |
[4] | 王瑞, 肖瑶, 顾汉洋, 叶亚楠. 螺旋管内单相流动周向非均匀传热现象的数值模拟[J]. 上海交通大学学报, 2020, 54(7): 688-696. |
[5] | . 半潜式钻井平台风载特征及影响因素分析[J]. 海洋工程装备与技术, 2019, 6(3): 548-. |
[6] | 郁程,董小倩,杨晨俊. 侧推器体积力模型及其应用[J]. 上海交通大学学报(自然版), 2018, 52(3): 291-296. |
[7] | 李懿霖,宋保维. 空化器直径对超空泡航行器空泡性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(12): 1488-1492. |
[8] | 米百刚,詹浩. 先进飞行器动导数数值模拟新方法[J]. 上海交通大学学报(自然版), 2016, 50(04): 619-624. |
[9] | 刘承江1,王永生1,古成中2. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报(自然版), 2016, 50(01): 91-97. |
[10] | 刘晗a,马宁a,b*,邵闯a,顾解忡a,b. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 115-122. |
[11] | 周振龙,朱锡,张帅. 螺旋桨CFD不确定度及叶形对桨叶变形的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 74-80. |
[12] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[13] | 田文龙,宋保维,毛昭勇. 水下航行器海流发电装置叶轮的数值仿真[J]. 上海交通大学学报(自然版), 2013, 47(08): 1306-1311. |
[14] | 蒋兰芳a,刘红b,鲁聪达b,牟介刚b,郭超b. 船用柴油机阻燃式防爆阀的压力降分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 889-893. |
[15] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||