上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1148-1158.doi: 10.16183/j.cnki.jsjtu.2021.175
收稿日期:
2021-05-27
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
张怀新
E-mail:huaixinzhang@126.com
作者简介:
秦广菲(1996-),男,河南省濮阳市人,博士生,从事螺旋桨激振力与船体振动的研究.
基金资助:
QIN Guangfei1, YAO Huilan2, ZHANG Huaixin1()
Received:
2021-05-27
Online:
2022-09-28
Published:
2022-10-09
Contact:
ZHANG Huaixin
E-mail:huaixinzhang@126.com
摘要:
为研究静水中航行的船舶在螺旋桨脉动压力作用下的艉部振动特性,基于雷诺平均(RANS)方法,结合剪切应力输运(SST) k-ω湍流模型进行船桨自航数值模拟.将得到的船体表面脉动压力作为外激励,并通过结构有限元模型耦合流场边界元模型进行声固耦合计算,建立了螺旋桨表面力激励自航船舶艉部振动数值预报方法.通过分析螺旋桨表面力在时域与频域内的变化规律,发现叶频分量的幅值远大于其他频率分量的幅值.对于右旋桨,螺旋桨上方的右舷侧压力幅值高于左舷侧压力幅值.通过研究螺旋桨表面力、结构固有特性与振动响应结果之间的对应关系,发现船艉结构耦合模态固有频率应当远离螺旋桨激励力频率,以降低振动响应.通过探究相同激励作用下船艉结构变化对振动响应的影响,发现增加板厚或者安装加强筋可以改变结构固有特性,从而避开共振,达到减振效果.
中图分类号:
秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158.
QIN Guangfei, YAO Huilan, ZHANG Huaixin. Numerical Study of Stern Vibration of a Self-Propulsion Ship in Propeller Induced Pressure Fluctuation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1148-1158.
表4
各组模型的前10阶耦合模态固有频率
阶数 | 模型I | 模型II | 模型III | 模型IV | 模型V | 模型VI | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d/mm | 加强筋 | d/mm | 加强筋 | d/mm | 加强筋 | d/mm | 加强筋 | d/mm | 加强筋 | d/mm | 加强筋 | |||||||||||||||||
4.0 | 无 | 4.5 | 无 | 5.0 | 无 | 5.5 | 无 | 4.0 | 有 | 5.5 | 有 | |||||||||||||||||
1 | 46.8 | 51.0 | 54.9 | 58.6 | 53.1 | 63.0 | ||||||||||||||||||||||
2 | 58.2 | 65.5 | 72.8 | 80.0 | 63.6 | 86.3 | ||||||||||||||||||||||
3 | 62.9 | 70.6 | 78.3 | 86.1 | 71.8 | 92.6 | ||||||||||||||||||||||
4 | 63.1 | 71.5 | 79.9 | 88.5 | 73.8 | 98.5 | ||||||||||||||||||||||
5 | 69.6 | 78.3 | 87.0 | 95.5 | 83.0 | 104.7 | ||||||||||||||||||||||
6 | 70.5 | 79.1 | 87.5 | 95.7 | 86.8 | 110.6 | ||||||||||||||||||||||
7 | 74.3 | 82.3 | 90.3 | 98.5 | 89.7 | 112.9 | ||||||||||||||||||||||
8 | 86.3 | 97.0 | 107.6 | 118.3 | 95.4 | 130.2 | ||||||||||||||||||||||
9 | 92.6 | 104.0 | 115.3 | 126.4 | 100.8 | 137.9 | ||||||||||||||||||||||
10 | 95.5 | 107.4 | 119.3 | 131.2 | 110.7 | 144.7 |
[1] | 中国船级社. 船上振动控制指南[S]. 北京: 人民交通出版社, 2012. |
China Classification Society. Guidelines for shipboard vibration contral[S]. Beijing: China Communications Press, 2012. | |
[2] | 刘西安. 船舶尾部振动计算研究[D]. 武汉: 中国舰船研研究设计中心, 2018. |
LIU Xian. The research for vibration of the stern structure[D]. Wuhan: China Ship Development and Design Center, 2018. | |
[3] | 陈翔, 夏利娟, 丁金鸿, 等. 散货船的总振动模态计算和动力响应预报[J]. 舰船科学技术, 2013, 35(3): 115-120. |
CHEN Xiang, XIA Lijuan, DING Jinhong, et al. The global vibration and dynamic response evaluation of a bulk carrier[J]. Ship Science and Technology, 2013, 35(3): 115-120. | |
[4] | 周清华, 李祥宁, 胡要武. 滑行艇尾部结构的模态分析和响应预报[J]. 舰船科学技术, 2011, 33(7): 36-39. |
ZHOU Qinghua, LI Xiangning, HU Yaowu. Vibration mode analysis and response prediction of stern structure for planing boat[J]. Ship Science and Technology, 2011, 33(7): 36-39. | |
[5] | 许树浩, 黄茜, 梁川. 全船总振动数值计算研究[C]// 第十五届船舶水下噪声学术讨论会论文集. 郑州: 中国船舶科学研究中心, 2015: 390-398. |
XU Shuhao, HUANG Qian, LIANG Chuan. Research on numerical calculation of ship’s total vibration[C]// Proceedings of the 15th Symposium on Ship Underwater Noise. Zhengzhou, China: China Ship Scientific Research Center, 2015: 390-398. | |
[6] | 朱理, 庞福振, 康逢辉. 螺旋桨激励力下的舰船振动特性分析[J]. 中国造船, 2011, 52(2): 8-15. |
ZHU Li, PANG Fuzhen, KANG Fenghui. Vibration characteristic of a warship subjected to propeller excitation[J]. Shipbuilding of China, 2011, 52(2): 8-15. | |
[7] | 陈如星, 周瑞平, 林晞晨. 基于CFX的螺旋桨激振力数值预报研究[J]. 武汉理工大学学报, 2014, 36(7): 73-79. |
CHEN Ruxing, ZHOU Ruiping, LIN Xichen. Numerical simulation of the propeller-induced force based on CFX[J]. Journal of Wuhan University of Technology, 2014, 36(7): 73-79. | |
[8] | YAO H L, ZHANG H X. Numerical studies of propeller exciting bearing forces under nonuniform ship’s nominal wake and the influence of cross flows[J]. Shock and Vibration, 2017, 2017: 4319260. |
[9] | 李亮, 王超, 孙帅, 等. 实船自航试验数值模拟及尺度效应分析[J]. 哈尔滨工程大学学报, 2016, 37(7): 901-907. |
LI Liang, WANG Chao, SUN Shuai, et al. Numerical simulation and scale effect of self-propulsion test of a full-scale ship[J]. Journal of Harbin Engineering University, 2016, 37(7): 901-907. | |
[10] |
JASAK H, VUKČEVIĆ V, GATIN I, et al. CFD validation and grid sensitivity studies of full scale ship self propulsion[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 33-43.
doi: 10.1016/j.ijnaoe.2017.12.004 URL |
[11] | 余嘉威, 周宇杰, 何涛, 等. 实尺度KCS自航性能URANS仿真[C]// 第三十一届全国水动力学研讨会论文集. 厦门: 海洋出版社, 2020: 997-1006. |
YU Jiawei, ZHOU Yujie, HE Tao, et al. Unsteady viscous CFD simulations of full-scale kcs self-propulsion[C]// Proceedings of the 31st National Hydrodynamics Symposium. Xiamen, China: China Ocean Press, 2020: 997-1006. | |
[12] | 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014. |
SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
[13] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
doi: 10.2514/3.12149 URL |
[14] | 刘城, 洪明, 刘晓冰. 有限元/间接边界元法求解浸水板振动特性[J]. 哈尔滨工程大学学报, 2014, 35(4): 395-400. |
LIU Cheng, HONG Ming, LIU Xiaobing. The solution for vibration characteristics of submerged plates by applying FEM/IBEM[J]. Journal of Harbin Engineering University, 2014, 35(4): 395-400. | |
[15] | 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声的声固耦合数值计算方法[J]. 振动与冲击, 2018, 37(3): 174-179. |
LI Qing, YANG Deqing, YU Yang. Numerical methods for ship underwater sound radiation in low frequency domain with vibro-acoustic coupling[J]. Journal of Vibration and Shock, 2018, 37(3): 174-179. | |
[16] | HINO T, SATO Y. Ship flow computation by unstructured NS solver SURF[C]// Proceedings of CFD Workshop. Tokyo, Japan: International Steering Committee, 2005: 641-645. |
[17] | 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017, 58(3): 114-127. |
LI Qing, YANG Deqing, YU Yang. Comparative study on numerical methods for underwater low-frequency radiation noise of ship[J]. Shipbuilding of China, 2017, 58(3): 114-127. |
[1] | 牛振宇, 刘林芽, 秦佳良, 左志远. 减振垫层温频变动力性能对无砟轨道振动特性影响[J]. 上海交通大学学报, 2022, 56(9): 1238-1246. |
[2] | 杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
[3] | 刘小波, 陆韵, 张鑫, 徐华松. 基于风洞试验和CFD计算的折叠翼气动特性研究[J]. 空天防御, 2021, 4(1): 77-82. |
[4] | 李召伦,王小静,沈轶钒,陈超,董健. 滑动轴承-转子系统中金属阻尼器的减振特性[J]. 上海交通大学学报(自然版), 2018, 52(5): 612-619. |
[5] | 安成光,曹阳,张建武. 双筒式液压减振器节流孔气穴现象和噪声分析[J]. 上海交通大学学报(自然版), 2018, 52(3): 297-304. |
[6] | 钱雅兰,王德忠,顾卫国,熊洁梅. 核废物桶检测中探测效率的数值方法[J]. 上海交通大学学报(自然版), 2017, 51(1): 1-. |
[7] | 倪阳, 姚木林, 宋长友, 李明政. 新型水动力式水面薄油膜回收分离装置设计[J]. 海洋工程装备与技术, 2015, 2(5): 342-346. |
[8] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
[9] | . 《计算机辅助船体制造》简介[J]. 海洋工程装备与技术, 2014, 1(2): 139-139. |
[10] | 陈劼实, 陈军, 黄元辰, 王勇. 树脂复合减振钢板法向黏结强度与扩孔性能的试验研究[J]. 上海交通大学学报(自然版), 2011, 45(06): 920-923. |
[11] | 钱骥, 孙利民. 大跨径人行桥人致振动舒适性评估及减振措施[J]. 上海交通大学学报(自然版), 2011, 45(05): 677-681. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||