上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (7): 953-964.doi: 10.16183/j.cnki.jsjtu.2021.105
收稿日期:
2021-04-06
出版日期:
2022-07-28
发布日期:
2022-08-16
通讯作者:
杨华龙
E-mail:hlyang@dlmu.edu.cn.
作者简介:
李德昌(1994-),男,山东省德州市人,博士生,主要从事集装箱班轮运输研究.
基金资助:
LI Dechang, YANG Hualong(), DUAN Jingru
Received:
2021-04-06
Online:
2022-07-28
Published:
2022-08-16
Contact:
YANG Hualong
E-mail:hlyang@dlmu.edu.cn.
摘要:
针对码头运营商与船公司间签署船舶到港多时间窗、多起讫时刻和多装卸速率合作协议下的集装箱班轮运输船期设计和加油策略联合优化问题,考虑各加油港燃油价格差异和折扣因素,建立了以班轮运输服务总成本最小化为目标的船期设计和加油策略非线性混合整数规划模型,结合船舶驾驶操控实际,设计了离散化和线性化模型求解技术方法.以中国远洋海运集团有限公司AEX1航线为例进行了大量模拟验证.算例结果显示,船期设计和加油策略联合优化有助于船公司灵活地调整船舶航速,可显著降低班轮运输服务总成本.敏感性分析表明,随着合作协议中船舶到港时间窗长度的扩大,班轮运输服务总成本和船舶航次加油量都随之降低;无论燃油价格如何变化,船期设计和加油策略联合优化都能有效降低班轮运输服务总成本.
中图分类号:
李德昌, 杨华龙, 段静茹. 基于合作协议的集装箱班轮运输船期设计和加油策略联合优化[J]. 上海交通大学学报, 2022, 56(7): 953-964.
LI Dechang, YANG Hualong, DUAN Jingru. A Joint Optimization of Vessel Scheduling and Refueling Strategy for Container Liner Shipping with Cooperative Agreements[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 953-964.
表4
往返航次到离港船期和加油策略
港口 | 最早到港 时间/h | 平均到港 时间/h | 最迟到港 时间/h | 最早离港 时间/h | 平均离港 时间/h | 最迟离港 时间/h | 最小加 油量/t | 平均加 油量/t | 最大加 油量/t |
---|---|---|---|---|---|---|---|---|---|
青岛 | 0 | 0 | 0 | 4 | 32 | 80 | - | - | - |
上海 | 21 | 49 | 98 | 26 | 65 | 109 | - | - | - |
宁波 | 31 | 71 | 114 | 41 | 83 | 124 | - | - | - |
盐田 | 71 | 113 | 154 | 78 | 124 | 165 | - | - | - |
新加坡 | 137 | 185 | 230 | 142 | 195 | 240 | - | - | - |
巴生 | 151 | 204 | 248 | 166 | 214 | 256 | 500.00 | 2058.27 | 3000.00 |
费利克斯托 | 492 | 549 | 618 | 497 | 571 | 655 | - | - | - |
鹿特丹 | 502 | 576 | 660 | 518 | 586 | 674 | - | - | - |
汉堡 | 531 | 598 | 686 | 541 | 611 | 693 | 3432.00 | 4389.05 | 4500.00 |
泽布吕赫 | 556 | 625 | 707 | 565 | 637 | 714 | - | - | - |
鹿特丹 | 568 | 640 | 717 | 579 | 651 | 725 | - | - | - |
巴生 | 907 | 989 | 1 050 | 929 | 1 006 | 1 060 | 500.00 | 589.64 | 807.58 |
盐田 | 995 | 1 075 | 1 127 | 1 124 | 1 115 | 1 132 | - | - | - |
青岛 | 1 176 | 1 176 | 1 176 | 1 180 | 1 208 | 1 256 | - | - | - |
表5
不同模型下一个往返航次优化结果
模型 | 取值 | 总加油量/t | 营运成本× 10-6/美元 | 装卸成本× 10-6/美元 | 惩罚成本× 10-3/美元 | 燃油成本× 10-6/美元 | 库存成本× 10-6/美元 | 总成本× 10-7/美元 |
---|---|---|---|---|---|---|---|---|
[M2] | 最小值 | 5 824 | 2.100 | 3.474 | 0 | 1.777 | 3.982 | 1.2215 |
平均值 | 7 037 | 2.100 | 4.689 | 89 | 2.265 | 4.709 | 1.3852 | |
最大值 | 7 647 | 2.100 | 6.011 | 1 399 | 2.560 | 5.382 | 1.5877 | |
[M3] | 最小值 | 6 044 | 2.100 | 3.306 | 0 | 1.856 | 4.026 | 1.2427 |
平均值 | 6 774 | 2.100 | 4.896 | 302 | 2.169 | 4.807 | 1.4274 | |
最大值 | 7 624 | 2.100 | 6.346 | 4 426 | 2.478 | 5.365 | 1.8792 | |
[M4] | 最小值 | 5 841 | 2.100 | 3.515 | 0 | 2.281 | 3.966 | 1.2921 |
平均值 | 7 065 | 2.100 | 4.682 | 95 | 2.759 | 4.704 | 1.4340 | |
最大值 | 7 651 | 2.100 | 6.011 | 1 528 | 2.988 | 5.418 | 1.6694 |
表6
不同时间窗长度下的加油量平均值结果
时间窗 长度/h | 各加油港加油量/t | 合计/t | ||
---|---|---|---|---|
巴生(去程) | 汉堡 | 巴生(回程) | ||
U[24, 29] | 2114.49 | 4373.21 | 584.58 | 7072.28 |
U[29, 34] | 2102.04 | 4381.56 | 592.90 | 7076.50 |
U[34, 39] | 2087.93 | 4383.51 | 590.06 | 7061.50 |
U[39, 44] | 2080.80 | 4381.93 | 585.97 | 7048.70 |
U[44, 49] | 2072.53 | 4379.49 | 590.29 | 7042.31 |
U[49, 54] | 2058.27 | 4389.05 | 589.64 | 7036.96 |
U[54, 59] | 2052.40 | 4379.20 | 589.83 | 7021.43 |
U[59, 64] | 2044.22 | 4378.04 | 587.91 | 7010.17 |
U[64, 69] | 2039.85 | 4370.51 | 585.93 | 6996.29 |
U[69, 74] | 2019.83 | 4380.21 | 577.92 | 6977.96 |
U[74, 79] | 2015.72 | 4376.71 | 583.13 | 6975.56 |
表7
不同燃油价格变化率下的加油量平均值结果
变化 率/% | 各加油港加油量/t | 合计/t | ||||
---|---|---|---|---|---|---|
新加坡 | 巴生 | 汉堡 | 鹿特丹 | 巴生 | ||
-30 | - | 2313.64 | 4488.31 | - | 784.69 | 7586.64 |
-20 | - | 2220.44 | 4468.06 | - | 683.69 | 7372.19 |
-10 | - | 2099.90 | 4402.63 | - | 624.98 | 7127.51 |
0 | - | 2058.27 | 4389.05 | - | 589.64 | 7036.96 |
+10 | - | 2025.15 | 4365.62 | - | 556.03 | 6946.80 |
+20 | - | 1880.76 | 4334.44 | - | 517.25 | 6732.45 |
+30 | 1750.46 | - | 4274.87 | - | 500.00 | 6525.33 |
+40 | 1630.14 | - | 4188.93 | - | 500.00 | 6319.07 |
+50 | 1489.49 | - | 4139.83 | - | 500.00 | 6129.32 |
+60 | 1257.12 | - | 4191.41 | 500.00 | - | 5948.53 |
[1] |
FAN Y, BEHDANI B, BLOEMHOF-RUWAARD J. et al. Flow consolidation in hinterland container transport: An analysis for perishable and dry cargo[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 130: 128-160.
doi: 10.1016/j.tre.2019.08.011 URL |
[2] |
WANG S A, MENG Q. Robust bunker management for liner shipping networks[J]. European Journal of Operational Research, 2015, 243(3): 789-797.
doi: 10.1016/j.ejor.2014.12.049 URL |
[3] |
CHRISTIANSEN M, FAGERHOLT K, NYGREEN B, et al. Ship routing and scheduling in the new millennium[J]. European Journal of Operational Research, 2013, 228(3): 467-483.
doi: 10.1016/j.ejor.2012.12.002 URL |
[4] | PERAKIS A N, JARAMILLO D I. Fleet deployment optimization for liner shipping—Part 1: Background, problem formulation and solution approaches[J]. Maritime Policy & Management, 1991, 18(3): 183-200. |
[5] |
MANWO N. Distribution-free vessel deployment for liner shipping[J]. European Journal of Operational Research, 2014, 238(3): 858-862.
doi: 10.1016/j.ejor.2014.04.019 URL |
[6] |
BROUER B D, ALVAREZ J F, PLUM C E M, et al. A base integer programming model and benchmark suite for liner-shipping network design[J]. Transportation Science, 2014, 48(2): 281-312.
doi: 10.1287/trsc.2013.0471 URL |
[7] | 范厚明, 于佳琪, 马梦知, 等. 模糊时间窗下多船型不定期船调度与航速联合优化[J]. 上海交通大学学报, 2021, 55(3): 297-310. |
FAN Houming, YU Jiaqi, MA Mengzhi, et al. Heterogeneous tramp ship scheduling and speed optimization with fuzzy time window[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 297-310. | |
[8] |
REINHARDT L B, PISINGER D, SIGURD M M, et al. Speed optimizations for liner networks with business constraints[J]. European Journal of Operational Research, 2020, 285(3): 1127-1140.
doi: 10.1016/j.ejor.2020.02.043 URL |
[9] |
RONEN D. The effect of oil price on containership speed and fleet size[J]. Journal of the Operational Research Society, 2011, 62(1): 211-216.
doi: 10.1057/jors.2009.169 URL |
[10] |
FAGERHOLT K, LAPORTE G, NORSTAD I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529.
doi: 10.1057/jors.2009.77 URL |
[11] |
WANG C X, CHEN J J. Strategies of refueling, sailing speed and ship deployment of containerships in the low-carbon background[J]. Computers & Industrial Engineering, 2017, 114: 142-150.
doi: 10.1016/j.cie.2017.10.012 URL |
[12] |
WANG S A, ALHARBI A, DAVY P. Liner ship route schedule design with port time windows[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 1-17.
doi: 10.1016/j.trc.2014.01.012 URL |
[13] |
ALHARBI A, WANG S A, DAVY P. Schedule design for sustainable container supply chain networks with port time windows[J]. Advanced Engineering Informatics, 2015, 29(3): 322-331.
doi: 10.1016/j.aei.2014.12.001 URL |
[14] |
LIU Z Y, WANG S A, DU Y Q, et al. Supply chain cost minimization by collaboration between liner shipping companies and port operators[J]. Transportation Journal, 2016, 55(3): 296-314.
doi: 10.5325/transportationj.55.3.0296 URL |
[15] |
DULEBENETS M A. Minimizing the total liner shipping route service costs via application of an efficient collaborative agreement[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 123-136.
doi: 10.1109/TITS.2018.2801823 URL |
[16] |
YAO Z S, NG S H, LEE L H. A study on bunker fuel management for the shipping liner services[J]. Computers & Operations Research, 2012, 39(5): 1160-1172.
doi: 10.1016/j.cor.2011.07.012 URL |
[17] |
WANG S A, MENG Q, LIU Z Y. Bunker consumption optimization methods in shipping: A critical review and extensions[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 53: 49-62.
doi: 10.1016/j.tre.2013.02.003 URL |
[18] |
邢玉伟, 杨华龙, 马雪菲. 差异化定价策略下的远洋洲际班轮航速与航线配船优化[J]. 系统工程理论与实践, 2018, 38(12): 3222-3234.
doi: 10.12011/1000-6788(2018)12-3222-13 |
XING Yuwei, YANG Hualong, MA Xuefei. Optimization of containership sailing speed and fleet deployment for continental ocean liner based on freight rate differentiation strategy[J]. Systems Engineering-Theory & Practice, 2018, 38(12): 3222-3234. | |
[19] |
DULEBENETS M A, OZGUVEN E E. Vessel scheduling in liner shipping: Modeling transport of perishable assets[J]. International Journal of Production Economics, 2017, 184: 141-156.
doi: 10.1016/j.ijpe.2016.11.011 URL |
[1] | 叶鸿庆, 苏华德, 郑美妹, 夏唐斌. 考虑双供应商的维护和备件订购联合决策优化[J]. 上海交通大学学报, 2022, 56(10): 1359-1367. |
[2] | 石郭, 司国锦, 夏唐斌, 潘尔顺, 奚立峰. 面向能耗控制的预知维护与刀具更换联合优化策略[J]. 上海交通大学学报, 2020, 54(12): 1235-1243. |
[3] | 陶辛阳,夏唐斌,奚立峰. 基于健康指数的预防性维护与多目标生产调度联合优化建模[J]. 上海交通大学学报(自然版), 2014, 48(08): 1170-1174. |
[4] | 邵金明,何晨,蒋铃鸽. 无线Mesh网络信道路由联合优化算法[J]. 上海交通大学学报(自然版), 2010, 44(08): 1051-1056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||