上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (3): 253-266.doi: 10.16183/j.cnki.jsjtu.2021.464
所属专题: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2021-11-19
出版日期:
2022-03-28
发布日期:
2022-04-01
通讯作者:
徐潇源
E-mail:xuxiaoyuan@sjtu.edu.cn
作者简介:
李佳琪(1994-),女,天津市人,博士生,从事电力系统优化运行研究.
基金资助:
LI Jiaqi, XU Xiaoyuan(), Yan Zheng
Received:
2021-11-19
Online:
2022-03-28
Published:
2022-04-01
Contact:
XU Xiaoyuan
E-mail:xuxiaoyuan@sjtu.edu.cn
摘要:
新能源的大规模开发利用是实现“双碳”目标的重要手段.可再生能源发电耦合制氢技术在提高可再生能源消纳率的同时,加速了新能源汽车的普及.未来,电氢能源系统与交通系统的耦合将会更加密切.以大规模新能源汽车接入为背景,首先综述了电氢能源系统的发展现状,并对耦合系统制氢、出力波动平抑以及参与电力系统优化运行3种工作模式进行了介绍.在此基础上,从不同能源角度出发,分别对电力-交通耦合系统中的联合规划与优化运行研究现状以及氢能-交通耦合系统中的加氢站优化与氢能运输相关问题进行了总结分析.最后,结合当前研究中存在的瓶颈,从动态模型构建、不确定性因素影响等方面对未来可行研究方向进行了展望.
中图分类号:
李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266.
LI Jiaqi, XU Xiaoyuan, Yan Zheng. A Review of Coupled Electricity and Hydrogen Energy System with Transportation System Under the Background of Large-Scale New Energy Vehicles Access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266.
表1
电力-交通耦合系统联合规划相关文献总结比较
文献 编号 | 交通网模型 | 电网模型 | 数学模型 | 规划对象 | 规划目标 | |||
---|---|---|---|---|---|---|---|---|
流量型 | 网络均衡型 | 电网 | 耦合枢纽 | 交通网 | ||||
[ | 续航选址 | × | 线性化 潮流模型 | MILP | 变电站 配电线 | 充电站 | × | 耦合系统投资,运行成本最小 |
[ | 改进续航 选址 | × | ACOPF | MISOCP | 变电站 配电线 | 充电站 | × | 耦合系统投资,运行成本最小 |
[ | × | UE | DCOPF | MPCC | × | 充电站 | × | 耦合系统社会收益最大 |
[ | × | UE | ACOPF | 多目标非 线性规划 | 变电站 配电线 | 充电站 | × | 配电网投资成本,能量损耗最小充电站交通流量最大 |
[ | × | UE | ACOPF | 非线性规划 | × | 充电站 | × | 耦合系统投资,运行成本最小 |
[ | × | UE | ACOPF | MILP | 电源 配电线 | 充电站 | 交通道路 | 耦合系统投资,运行成本最小 |
表2
电力-交通耦合系统优化运行相关文献总结比较
文献 编号 | 网络模型 | 数学模型/方法 | 运营机制 | 价格信号 | 优化运行目标 | ||||
---|---|---|---|---|---|---|---|---|---|
交通网 | 电网 | 交通网 | 电网 | 交通网 | 电网 | ||||
[ | 静态(UE) | DCOPF | MPCC | 统一/独立 | 道路拥挤费 | LMP | 出行、充电成本、最小 | 发电成本最小 | |
[ | 静态(UE) | ACOPF | MISOCP | 统一 | 道路拥挤费 | 固定电价 | 出行成本、道路拥塞费最小 | 发电、购电成本最小 | |
[ | 静态(UE) | ACOPF | MPCC | 统一 | 道路拥挤费 | 联合优化定价 | 出行、充电成本、道路拥塞费最小 | 有功网损最小 | |
[ | 静态(UE) | ACOPF | 固定点问题 | 独立 | × | LMP | 出行、充电成本最小 | 发电、购电成本最小 | |
[ | 静态(UE) | DCOPF | 分布式优化 | 独立 | × | LMP | 出行、充电成本最小 | 发电、切负荷成本最小 | |
[ | 静态(UE) | ACOPF | 两阶段鲁棒优化 | 独立 | × | 固定电价 | 出行成本最小 | 发电成本最小 | |
[ | 静态(SO) | ACOPF | 两阶段鲁棒优化 | 统一 | 道路拥挤费 | 固定电价 | 出行成本、道路拥塞费最小 | 发电、购电成本最小 | |
[ | 静态(UE) | ACOPF | 随机优化 | 统一 | × | LMP | 出行、充电成本最小 | 发电、购电成本最小 | |
[ | 半动态 | ACOPF | MISOCP | 统一 | 道路拥挤费 | 固定电价 | 出行成本、道路拥塞费最小 | 发电成本最小 | |
[ | 动态 | ACOPF | 固定点问题 | 独立 | × | LMP | 出行、充电成本最小 | 发电、购电成本最小 |
[1] | 鲍健强, 苗阳, 陈锋. 低碳经济: 人类经济发展方式的新变革[J]. 中国工业经济, 2008(4):153-160. |
BAO Jianqiang, MIAO Yang, CHEN Feng. Low carbon economy: Revolution in the way of human economic development[J]. China Industrial Economics, 2008(4):153-160. | |
[2] | 平新乔, 郑梦圆, 曹和平. 中国碳排放强度变化趋势与“十四五”时期碳减排政策优化[J]. 改革, 2020(11):37-52. |
PING Xinqiao, ZHENG Mengyuan, CAO Heping. The change trend of carbon emission intensity in China and the policy optimization of carbon emission reduction during the 14th five-year plan period[J]. Reform, 2020(11):37-52. | |
[3] | 何建坤. 碳达峰碳中和目标导向下能源和经济的低碳转型[J]. 环境经济研究, 2021, 6(1):1-9. |
HE Jiankun. Low carbon transformation of energy and economy aiming for the peaking of carbon emission and carbon neutrality[J]. Journal of Environmental Economics, 2021, 6(1):1-9. | |
[4] | 陈思茹, 张帅, 袁长伟. 中国交通运输经济发展与碳排放效率评价[J]. 中国公路学报, 2019, 32(1):154-161. |
CHEN Siru, ZHANG Shuai, YUAN Changwei. China’s transportation economy development and carbon environmental efficiency evaluation[J]. China Journal of Highway and Transport, 2019, 32(1):154-161. | |
[5] | International Energy Agency. Global EV outlook 2019, (2019-05-30)[2021-06-21]. https://www.iea.org/gevo2019/ https://www.iea.org/gevo2019/. |
[6] | 宋城. 国家发改委等联合印发《汽车产业中长期发展规划》[J]. 中国设备工程, 2017(9):1. |
SONG Cheng. The national development and reform commission and others jointly issue <The medium and long term development plan of automobile industry>[J]. China Plant Engineering, 2017(9):1. | |
[7] | 胡海涛, 郑政, 何正友, 等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报, 2018, 38(1):12-24. |
HU Haitao, ZHENG Zheng, HE Zhengyou, et al. Transport energy internet architecture and key technologies[J]. Proceedings of the CSEE, 2018, 38(1):12-24. | |
[8] | 杨天宇, 郭庆来, 盛裕杰, 等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化, 2020, 44(11):1-9. |
YANG Tianyu, GUO Qinglai, SHENG Yujie, et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems, 2020, 44(11):1-9. | |
[9] | 葛维春, 张艳军, 高超, 等. 基于风电消纳能力态势划分的源荷储系统分阶段优化策略[J]. 电力系统自动化, 2019, 43(15):26-33. |
GE Weichun, ZHANG Yanjun, GAO Chao, et al. Phased optimal strategy of source-load-storage system based on state partition of accommodation capacity of wind power[J]. Automation of Electric Power Systems, 2019, 43(15):26-33. | |
[10] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4):11-24. |
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4):11-24. | |
[11] | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21):127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21):127-135. | |
[12] | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19):4071-4083. |
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19):4071-4083. | |
[13] | 许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报, 2019, 39(9):2531-2537. |
XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9):2531-2537. | |
[14] | ABDIN Z, ZAFARANLOO A, RAFIEE A, et al. Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120:109620. |
[15] | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8):25-32. |
LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8):25-32. | |
[16] | 郝伟峰, 贾丹瑶, 李红军. 基于可再生能源水电解制氢技术发展概述[J]. 价值工程, 2018, 37(29):236-237. |
HAO Weifeng, JIA Danyao, LI Hongjun. Overview of hydrogen production technology based on renewable energy from water electrolysis[J]. Value Engineering, 2018, 37(29):236-237. | |
[17] | 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3):446-462. |
LI Zheng, ZHANG Rui, SUN Hexu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3):446-462. | |
[18] | 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学, 2015, 17(3):30-34. |
YAN Zhuoyong, KONG Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Strategic Study of CAE, 2015, 17(3):30-34. | |
[19] | HUANG P H, KUO J K, WU Z D. Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(20):8514-8524. |
[20] | 都鹤, 吕洪, 杨代军. 风光互补发电制氢系统仿真研究进展[J]. 电源技术, 2017, 41(1):173-175. |
DU He, LV Hong, YANG Daijun. Simulation research progress of wind/photovoltaic (PV) hydrogen system[J]. Chinese Journal of Power Sources, 2017, 41(1):173-175. | |
[21] | BRAUNS J, TUREK T. Alkaline water electrolysis powered by renewable energy: A review[J]. Processes, 2020, 8(2):248-260. |
[22] | 吴涛. 离网型风电制氢系统功率变换及控制技术研究[D]. 北京: 中国科学院大学, 2018. |
WU Tao. Research on power conversion and control technology of off grid wind power hydrogen generation system[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
[23] | 李文磊. 风光互补发电储能制氢系统研究[D]. 邯郸: 河北工程大学, 2019. |
LI Wenlei. Research on hydrogen production system of wind-solar complementary power generation[D]. Handan: Hebei University of Engineering, 2019. | |
[24] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3):463-472. |
SHEN Xiaojun, NIE Congying, LÜ Hong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3):463-472. | |
[25] | ZAENAL M U, SAMI MOHAMMED S, WAHHAB A A, et al. Complementary power supply to compensate the wind power in water electrolytic system for hydrogen production[C]// 2019 Global Conference for Advancement in Technology. Bangalore, India: IEEE, 2019: 1-4. |
[26] | GARCÍA CLÚA J G, DE BATTISTA H, MANTZ R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11):5786-5792. |
[27] | 邓智宏, 江岳文. 考虑制氢效率特性的风氢系统容量优化[J]. 可再生能源, 2020, 38(2):259-266. |
DENG Zhihong, JIANG Yuewen. Optimal sizing of a wind-hydrogen system under consideration of the efficiency characteristics of electrolysers[J]. Renewable Energy Resources, 2020, 38(2):259-266. | |
[28] | NADALETI W C, BORGES DOS SANTOS G, LOURENÇO V A. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis[J]. International Journal of Hydrogen Energy, 2020, 45(3):1373-1384. |
[29] | HUMAN G, VAN SCHOOR G, UREN K R. Power management and sizing optimisation of renewable energy hydrogen production systems[J]. Sustainable Energy Technologies and Assessments, 2019, 31:155-166. |
[30] | WON W, KWON H, HAN J H, et al. Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization[J]. Renewable Energy, 2017, 103:226-238. |
[31] | 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7):2156-2164. |
YUAN Tiejiang, HU Kelin, GUAN Yuhang, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. High Voltage Engineering, 2015, 41(7):2156-2164. | |
[32] | 俞红梅, 衣宝廉. 电解制氢与氢储能[J]. 中国工程科学, 2018, 20(3):58-65. |
YU Hongmei, YI Baolian. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic Study of CAE, 2018, 20(3):58-65. | |
[33] | TAKAHASHI R, KINOSHITA H, MURATA T, et al. A cooperative control method for output power smoothing and hydrogen production by using variable speed wind generator[C]// 2008 13th International Power Electronics and Motion Control Conference. Pozan, Poland: IEEE, 2008: 2337-2342. |
[34] | 牛萌, 肖宇, 刘锋, 等. 可再生能源接入对氢储能系统的影响及控制策略[J]. 电力建设, 2018, 39(4):28-34. |
NIU Meng, XIAO Yu, LIU Feng, et al. Influences of renewable energy on hydrogen storage system and its control strategy[J]. Electric Power Construction, 2018, 39(4):28-34. | |
[35] | 袁铁江, 董小顺, 张增强, 等. 基于氢储能技术的双馈风力发电系统基本架构及其建模[J]. 高电压技术, 2016, 42(7):2100-2110. |
YUAN Tiejiang, DONG Xiaoshun, ZHANG Zengqiang, et al. Architecture and modeling of doubly-fed wind power generation system based on hydrogen energy storage technology[J]. High Voltage Engineering, 2016, 42(7):2100-2110. | |
[36] | TAHARA S, KOIWA K, UMEMURA A, et al. A new method to control frequency fluctuation of power system with wind farm by using hydrogen generating system[C]// 3rd Renewable Power Generation Conference. Naples, Italy: IET, 2014: 1-6. |
[37] | TAKAHASHI R, KINOSHITA H, MURATA T, et al. Output power smoothing and hydrogen production by using variable speed wind generators[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2):485-493. |
[38] | MUYEEN S M, TAKAHASHI R, TAMURA J. Electrolyzer switching strategy for hydrogen generat-ion from variable speed wind generator[J]. Electric Power Systems Research, 2011, 81(5):1171-1179. |
[39] | 张宏博, 任泓源, 金成日. 基于氢氧储能的平抑风电输出功率方法研究[J]. 黑龙江科技信息, 2014(27):158. |
ZHANG Hongbo, REN Hongyuan, JIN Chengri. Research on the method of stabilizing wind power output based on hydrogen oxygen energy storage[J]. Heilongjiang Science and Technology Information, 2014(27):158. | |
[40] | RECALDE MELO D F, CHANG-CHIEN L R. Synergistic control between hydrogen storage system and offshore wind farm for grid operation[J]. IEEE Transactions on Sustainable Energy, 2014, 5(1):18-27. |
[41] | FANG R M, LIANG Y. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46):25104-25111. |
[42] | 杨少帅, 刘易. 基于滤波原理的光氢超并网系统建模与功率控制[J]. 电测与仪表, 2017, 54(15):86-90. |
YANG Shaoshuai, LIU Yi. Modeling and power control of active PV electrolyzer and supercapacitor grid-connected system based on the principle of filtering[J]. Electrical Measurement & Instrumentation, 2017, 54(15):86-90. | |
[43] | 孙泽伦, 陈洁, 滕扬新, 等. 基于混合储能平抑风电波动的负反馈分层模糊控制策略[J]. 电力电容器与无功补偿, 2019, 40(4):176-182. |
SUN Zelun, CHEN Jie, TENG Yangxin, et al. Negative feedback hierarchical fuzzy control strategy based on hybrid energy storage wind power fluctuation suppression[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(4):176-182. | |
[44] | PATSIOS C, ANTONAKOPOULOS M, CHANIOTIS A, et al. Control and analysis of a hybrid renewable energy-based power system[C]// The XIX International Conference on Electrical Machines-ICEM 2010. Rome, Italy: IEEE, 2010: 1-6. |
[45] | AGBOSSOU K, KOLHE M, HAMELIN J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen[J]. IEEE Transactions on Energy Conversion, 2004, 19(3):633-640. |
[46] | HARUNI A M O, NEGNEVITSKY M, HAQUE M E, et al. A novel operation and control strategy for a standalone hybrid renewable power system[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2):402-413. |
[47] | ABDELKAFI A, KRICHEN L. Energy management optimization of a hybrid power production unit based renewable energies[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:1-9. |
[48] | ZHOU T, FRANCOIS B. Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1):95-104. |
[49] | 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10):2982-2990. |
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power System Technology, 2016, 40(10):2982-2990. | |
[50] | 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17):84-94. |
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17):84-94. | |
[51] | 蔡国伟, 彭龙, 孔令国, 等. 光氢混合发电系统功率协调控制[J]. 电力系统自动化, 2017, 41(1):109-116. |
CAI Guowei, PENG Long, KONG Lingguo, et al. Power coordinated control of photovoltaic and hydrogen hybrid power generation system[J]. Automation of Electric Power Systems, 2017, 41(1):109-116. | |
[52] | 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14):3371-3384. |
KONG Lingguo, CAI Guowei, LI Longfei, et al. Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14):3371-3384. | |
[53] | 张虹, 孙权, 李占军, 等. 风氢耦合系统协同控制发电策略研究[J]. 东北电力大学学报, 2018, 38(3):15-23. |
ZHANG Hong, SUN Quan, LI Zhanjun, et al. Research on synergistic control strategy of wind power coupled with hydrogen system[J]. Journal of Northeast Electric Power University, 2018, 38(3):15-23. | |
[54] | YAMASHITA D, TSUNO K, KOIKE K, et al. Distributed control of a user-on-demand renewable-energy power-source system using battery and hydrogen hybrid energy-storage devices[J]. International Journal of Hydrogen Energy, 2019, 44(50):27542-27552. |
[55] | 邓浩, 陈洁, 焦东东, 等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术, 2020, 46(1):99-106. |
DENG Hao, CHEN Jie, JIAO Dongdong, et al. Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High Voltage Engineering, 2020, 46(1):99-106. | |
[56] | 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42(1):170-179. |
LIU Jichun, ZHOU Chunyan, GAO Hongjun, et al. A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power System Technology, 2018, 42(1):170-179. | |
[57] | 贾洋洋, 仲海涛, 张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力, 2019, 32(11):38-44. |
JIA Yangyang, ZHONG Haitao, ZHANG Zhisheng. Optimized economic dispatch of distributed energy system with hydrogen storage device[J]. Guangdong Electric Power, 2019, 32(11):38-44. | |
[58] | 李咸善, 杨宇翔. 基于双向电价补偿的含氢储能风电和梯级水电联合优化调度[J]. 电网技术, 2020, 44(9):3297-3306. |
LI Xianshan, YANG Yuxiang. Optimization dispatching for joint operation of hydrogen storage-wind power and cascade hydropower station based on bidirectional electricity price compensation[J]. Power System Technology, 2020, 44(9):3297-3306. | |
[59] | 刘志坚, 余莎, 梁宁. 考虑制氢储能参与的互联电力系统优化调度研究[J]. 电力科学与工程, 2020, 36(3):45-51. |
LIU Zhijian, YU Sha, LIANG Ning. The optimal scheduling with hydrogen energy storage participation for interconnected power system[J]. Electric Power Science and Engineering, 2020, 36(3):45-51. | |
[60] | 贾成真, 王灵梅, 孟恩隆, 等. 风光氢耦合发电系统的容量优化配置及日前优化调度[J]. 中国电力, 2020, 53(10):80-87. |
JIA Chengzhen, WANG Lingmei, MENG Enlong, et al. Optimal capacity configuration and day-ahead scheduling of wind-solar-hydrogen coupled power generation system[J]. Electric Power, 2020, 53(10):80-87. | |
[61] | 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5):1428-1439. |
WEI Fanrong, SUI Quan, LIN Xiangning, et al. Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5):1428-1439. | |
[62] | 滕云, 王泽镝, 金红洋, 等. 用于电网调节能力提升的电热氢多源协调储能系统模型[J]. 中国电机工程学报, 2019, 39(24):7209-7217. |
TENG Yun, WANG Zedi, JIN Hongyang, et al. A model and coordinated optimization for the multi-energy storage system of electricity heat hydrogen to regulation enhancement of power grid[J]. Proceedings of the CSEE, 2019, 39(24):7209-7217. | |
[63] | 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6):1603-1613. |
SUI Quan, MA Xiao, WEI Fanrong, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6):1603-1613. | |
[64] | 高晓松, 李更丰, 肖遥, 等. 基于分布鲁棒优化的电-气-热综合能源系统日前经济调度[J]. 电网技术, 2020, 44(6):2245-2254. |
GAO Xiaosong, LI Gengfeng, XIAO Yao, et al. Day-ahead economical dispatch of electricity-gas-heat integrated energy system based on distributionally robust optimization[J]. Power System Technology, 2020, 44(6):2245-2254. | |
[65] | 袁铁江, 段青熙, 秦艳辉, 等. 风电-氢储能与煤化工多能耦合系统能量广域协调控制架构[J]. 高电压技术, 2016, 42(9):2748-2755. |
YUAN Tiejiang, DUAN Qingxi, QIN Yanhui, et al. Energy wide-area coordination control architecture of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. High Voltage Engineering, 2016, 42(9):2748-2755. | |
[66] | 段青熙, 袁铁江, 梅生伟, 等. 风电-氢储能与煤化工多能耦合系统能量协调控制策略[J]. 高电压技术, 2018, 44(1):176-186. |
DUAN Qingxi, YUAN Tiejiang, MEI Shengwei, et al. Energy coordination control of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. High Voltage Engineering, 2018, 44(1):176-186. | |
[67] | 魏晓霞. “互联网+”下全球电动交通互联网与泛电动汽车充电网络模型[J]. 电气应用, 2015, 34(16):132-136. |
WEI Xiaoxia. “Internet+” global electric transport internet and pan electric vehicle charging network model[J]. Electrotechnical Application, 2015, 34(16):132-136. | |
[68] | 王珏莹, 胡志坚, 谢仕炜. 计及交通流量调度的智慧综合能源系统规划[J]. 中国电机工程学报, 2020, 40(23):7539-7555. |
WANG Jueying, HU Zhijian, XIE Shiwei. Smart multi-energy system planning considering the traffic scheduling[J]. Proceedings of the CSEE, 2020, 40(23):7539-7555. | |
[69] | 何正友, 向悦萍, 杨健维, 等. 电力与交通系统协同运行控制的研究综述及展望[J]. 全球能源互联网, 2020, 3(6):569-581. |
HE Zhengyou, XIANG Yueping, YANG Jianwei, et al. Review on cooperative operation and control of transportation and power systems[J]. Journal of Global Energy Interconnection, 2020, 3(6):569-581. | |
[70] | WEI W, WU D M, WU Q W, et al. Interdependence between transportation system and power distribution system: A comprehensive review on models and applications[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(3):433-448. |
[71] | TENG F, DING Z H, HU Z C, et al. Technical review on advanced approaches for electric vehicle charging demand management, part I: Applications in electric power market and renewable energy integration[J]. IEEE Transactions on Industry Applications, 2020, 56(5):5684-5694. |
[72] | 吕思, 卫志农. 基于动态无线充电的电力-交通网协同优化运行研究综述与展望[J]. 全球能源互联网, 2019, 2(5):484-491. |
LYU Si, WEI Zhinong. Coupling electricity and transportation networks to achieve dynamic wireless charging: Review and prospects[J]. Journal of Global Energy Interconnection, 2019, 2(5):484-491. | |
[73] | ZHANG H C, MOURA S J, HU Z C, et al. PEV fast-charging station siting and sizing on coupled transportation and power networks[J]. IEEE Transactions on Smart Grid, 2018, 9(4):2595-2605. |
[74] | ZHANG H C, MOURA S J, HU Z C, et al. A second-order cone programming model for planning PEV fast-charging stations[J]. IEEE Transactions on Power Systems, 2018, 33(3):2763-2777. |
[75] | HE F, WU D, YIN Y F, et al. Optimal deployment of public charging stations for plug-in hybrid electric vehicles[J]. Transportation Research Part B: Methodological, 2013, 47:87-101. |
[76] | YAO W F, ZHAO J H, WEN F S, et al. A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems[J]. IEEE Transactions on Power Systems, 2014, 29(4):1811-1821. |
[77] | XIANG Y, LIU J Y, LI R, et al. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates[J]. Applied Energy, 2016, 178:647-659. |
[78] | WEI W, WU L, WANG J H, et al. Expansion planning of urban electrified transportation networks: A mixed-integer convex programming approach[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1):210-224. |
[79] | HE F, YIN Y F, ZHOU J. Integrated pricing of roads and electricity enabled by wireless power transfer[J]. Transportation Research Part C: Emerging Technologies, 2013, 34:1-15. |
[80] | WEI W, MEI S W, WU L, et al. Optimal traffic-power flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2017, 8(1):84-95. |
[81] | HE F, YIN Y F, WANG J H, et al. Sustainability SI: Optimal prices of electricity at public charging stations for plug-in electric vehicles[J]. Networks and Spatial Economics, 2016, 16(1):131-154. |
[82] | WEI W, WU L, WANG J H, et al. Network equilibrium of coupled transportation and power distribution systems[J]. IEEE Transactions on Smart Grid, 2018, 9(6):6764-6779. |
[83] | MANSHADI S D, KHODAYAR M E, ABDELGHANY K, et al. Wireless charging of electric vehicles in electricity and transportation networks[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4503-4512. |
[84] | WEI W, MEI S W, WU L, et al. Robust operation of distribution networks coupled with urban transportation infrastructures[J]. IEEE Transactions on Power Systems, 2017, 32(3):2118-2130. |
[85] | 张津珲, 王旭, 蒋传文, 等. 计及交通流量不确定性的多网耦合综合能源系统优化调度方法[J]. 电网技术, 2019, 43(9):3081-3093. |
ZHANG Jinhui, WANG Xu, JIANG Chuanwen, et al. Optimal scheduling method of multi-network regional integrated energy system based on traffic flow uncertainty[J]. Power System Technology, 2019, 43(9):3081-3093. | |
[86] | QIAN T, SHAO C C, LI X L, et al. Enhanced coordinated operations of electric power and transportation networks via EV charging services[J]. IEEE Transactions on Smart Grid, 2020, 11(4):3019-3030. |
[87] | ZHOU Z, ZHANG X, GUO Q, et al. Analyzing power and dynamic traffic flows in coupled power and transportation networks[J]. Renewable and Sustainable Energy Reviews, 2021, 135:110083 |
[88] | LV S, WEI Z N, SUN G Q, et al. Optimal power and semi-dynamic traffic flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2020, 11(3):1854-1865. |
[89] | SHI X Y, MA Z J. An efficient game for vehicle-to-grid coordination problems in smart grids[J]. International Journal of Systems Science, 2015, 46(15):2686-2701. |
[90] | CHANG X Y, MA T, WU R. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives[J]. International Journal of Hydrogen Energy, 2019, 44(30):16015-16027. |
[91] | KUVVETLI Y. Multi-objective and multi-period hydrogen refueling station location problem[J]. International Journal of Hydrogen Energy, 2020, 45(55):30845-30858. |
[92] | 马志超, 冯浩, 闫云东. 加氢站供氢模式的选择及制氢技术的研究现状分析[J]. 广州化工, 2019, 47(16):132-134. |
MA Zhichao, FENG Hao, YAN Yundong. Selection of hydrogen supply mode for hydrogen station and analysis of research status for hydrogen production technology[J]. Guangzhou Chemical Industry, 2019, 47(16):132-134. | |
[93] | KANG J E, BROWN T, RECKER W W, et al. Refueling hydrogen fuel cell vehicles with 68 proposed refueling stations in California: Measuring deviations from daily travel patterns[J]. International Journal of Hydrogen Energy, 2014, 39(7):3444-3449. |
[94] | KUBY M, LINES L, SCHULTZ R, et al. Optimization of hydrogen stations in Florida using the Flow-Refueling Location Model[J]. International Journal of Hydrogen Energy, 2009, 34(15):6045-6064. |
[95] | KIM J G, KUBY M. The deviation-flow refueling location model for optimizing a network of refueling stations[J]. International Journal of Hydrogen Energy, 2012, 37(6):5406-5420. |
[96] | HONMA Y, KUBY M. Node-based vs. path-based location models for urban hydrogen refueling stations: Comparing convenience and coverage abilities[J]. International Journal of Hydrogen Energy, 2019, 44(29):15246-15261. |
[97] | MIRALINAGHI M, LOU Y Y, KESKIN B B, et al. Refueling station location problem with traffic deviation considering route choice and demand uncertainty[J]. International Journal of Hydrogen Energy, 2017, 42(5):3335-3351. |
[98] | DAGDOUGUI H, OUAMMI A, SACILE R. Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems[J]. International Journal of Hydrogen Energy, 2012, 37(6):5360-5371. |
[99] | CARR S, ZHANG F, LIU F, et al. Optimal operation of a hydrogen refuelling station combined with wind power in the electricity market[J]. International Journal of Hydrogen Energy, 2016, 41(46):21057-21066. |
[100] | XU X, HU W H, CAO D, et al. Optimal operational strategy for an offgrid hybrid hydrogen/electricity refueling station powered by solar photovoltaics[J]. Journal of Power Sources, 2020, 451:227810. |
[101] | 常乐, 倪维斗, 李政, 等. 氢能供应链中最佳运氢方式的选择[J]. 清华大学学报(自然科学版), 2009, 49(2):257-260. |
CHANG Le, NI Weidou, LI Zheng, et al. Selection of best hydrogen transport mode in the hydrogen supply chain[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(2):257-260. | |
[102] | NAZIR H, MUTHUSWAMY N, LOUIS C, et al. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution[J]. International Journal of Hydrogen Energy, 2020, 45(41):20693-20708. |
[103] | YANG C, OGDEN J. Determining the lowest-cost hydrogen delivery mode[J]. International Journal of Hydrogen Energy, 2007, 32(2):268-286. |
[104] | 马建新, 刘绍军, 周伟, 等. 加氢站氢气运输方案比选[J]. 同济大学学报(自然科学版), 2008, 36(5):615-619. |
MA Jianxin, LIU Shaojun, ZHOU Wei, et al. Comparison of hydrogen transportation methods for hydrogen refueling station[J]. Journal of Tongji University (Natural Science), 2008, 36(5):615-619. | |
[105] | REDDI K, ELGOWAINY A, RUSTAGI N, et al. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling[J]. International Journal of Hydrogen Energy, 2018, 43(9):4428-4438. |
[106] | LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks[J]. International Journal of Hydrogen Energy, 2019, 44(35):19302-19312. |
[107] | GIM B, BOO K J, CHO S M. A transportation model approach for constructing the cost effective central hydrogen supply system in Korea[J]. International Journal of Hydrogen Energy, 2012, 37(2):1162-1172. |
[1] | 余威, 杨欢红, 焦伟, 周泽. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324. |
[2] | 李爽a,杨明b,王春香a,王冰b. 面向全自动控制交通系统的车辆调度算法[J]. 上海交通大学学报(自然版), 2017, 51(2): 174-. |
[3] | 孔庆杰,陈宜开,刘允才. 基于证据融合的实时交通状态估计[J]. 上海交通大学学报(自然版), 2008, 42(10): 1682-1686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||