上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (1): 1-13.doi: 10.16183/j.cnki.jsjtu.2020.302
• • 下一篇
张伟1, 蒋朝飞2, 叶亚楠1, 王晓雁2, 龚自力2, 胡晨2, 肖瑶1(), 顾汉洋1
收稿日期:
2020-09-21
出版日期:
2022-01-28
发布日期:
2022-01-21
通讯作者:
肖瑶
E-mail:yxiao@sjtu.edu.cn
作者简介:
张 伟(1995-),男,江苏省盐城市人,硕士生,主要从事核反应堆热工水力实验研究.
基金资助:
ZHANG Wei1, JIANG Chaofei2, YE Ya’nan1, WANG Xiaoyan2, GONG Zili2, HU Chen2, XIAO Yao1(), GU Hanyang1
Received:
2020-09-21
Online:
2022-01-28
Published:
2022-01-21
Contact:
XIAO Yao
E-mail:yxiao@sjtu.edu.cn
摘要:
针对直接接触冷凝压力脉动与汽羽形态在单孔鼓泡器结构下的特性开展实验研究.基于高速摄像和高频压力传感器实现汽羽形态瞬时压力的同步测量,获得蒸汽质量流率及水箱温度对直接接触冷凝特性的影响规律,建立冷凝相图.分析不同冷凝区域瞬时压力与汽羽形态变化过程的对应关系,发现压力高频振荡与脱离气泡溃灭同时出现,脱离气泡溃灭后的冷凝消失过程伴随着压力波动强度的指数型振荡衰减.获得冷凝振荡区与稳定冷凝区的汽羽长度变化规律,发现在冷凝振荡区内汽羽长度随流率及温度的上升而增加;进入稳定冷凝区时,汽羽长度发生突降,而后继续随流率及温度的上升而增加.研究结果对鼓泡器在蒸汽排放装置上的工程应用具有一定的参考价值.
中图分类号:
张伟, 蒋朝飞, 叶亚楠, 王晓雁, 龚自力, 胡晨, 肖瑶, 顾汉洋. 蒸汽浸没射流冷凝特性实验研究[J]. 上海交通大学学报, 2022, 56(1): 1-13.
ZHANG Wei, JIANG Chaofei, YE Ya’nan, WANG Xiaoyan, GONG Zili, HU Chen, XIAO Yao, GU Hanyang. Experimental Study on Condensation of Steam Jet Injection in Submerged Condition[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 1-13.
[1] |
PATEL G, TANSKANEN V, HUJALA E, et al. Direct contact condensation modeling in pressure suppression pool system[J]. Nuclear Engineering and Design, 2017, 321:328-342.
doi: 10.1016/j.nucengdes.2016.08.026 URL |
[2] | 黄雄, 吕雪峰, 李依霖, 等. AP1000核电厂自动卸压系统功能分析[J]. 热力发电, 2016, 45(5):84-87. |
HUANG Xiong, LV Xuefeng, LI Yilin, et al. Function analysis for automatic depressurization system in AP1000 nuclear power plant[J]. Thermal Power Generation, 2016, 45(5):84-87. | |
[3] |
DE WITH P A, CALAY R K, DE WITH G. Three-dimensional condensation regime diagram for direct contact condensation of steam injected into water[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10):1762-1770.
doi: 10.1016/j.ijheatmasstransfer.2006.10.017 URL |
[4] |
CHO S, CHUN S Y, BAEK W P, et al. Effect of multiple holes on the performance of sparger during direct contact condensation of steam[J]. Experimental Thermal and Fluid Science, 2004, 28(6):629-638.
doi: 10.1016/j.expthermflusci.2003.10.002 URL |
[5] |
ZHAO Q B, HIBIKI T. Review: Condensation regime maps of steam submerged jet condensation[J]. Progress in Nuclear Energy, 2018, 107:31-47.
doi: 10.1016/j.pnucene.2017.12.014 URL |
[6] |
XU Q, GUO L J. Direct contact condensation of steam jet in crossflow of water in a vertical pipe. Experimental investigation on condensation regime diagram and jet penetration length[J]. International Journal of Heat and Mass Transfer, 2016, 94:528-538.
doi: 10.1016/j.ijheatmasstransfer.2015.02.036 URL |
[7] |
XU Q, YE S Y, CHEN Y S, et al. Condensation regime diagram for supersonic and subsonic steam jet condensation in water flow in a vertical pipe[J]. Applied Thermal Engineering, 2018, 130:62-73.
doi: 10.1016/j.applthermaleng.2017.10.135 URL |
[8] |
LI W C, MENG Z M, SUN Z N, et al. Investigations on the penetration length of steam-air mixture jets injected horizontally and vertically in quiescent water[J]. International Journal of Heat and Mass Transfer, 2018, 122:89-98.
doi: 10.1016/j.ijheatmasstransfer.2018.01.075 URL |
[9] |
YANG X P, LIU J P, FU P F, et al. Experimental and theoretical study of pressure oscillation of unstable steam-air jet condensation in water in a rectangular channel[J]. International Journal of Multiphase Flow, 2019, 119:14-27.
doi: 10.1016/j.ijmultiphaseflow.2019.07.009 URL |
[10] |
LI S Q, LU T, WANG L, et al. Experiment study on steam-water direct contact condensation in water flow in a Tee junction[J]. Applied Thermal Engineering, 2017, 120:99-106.
doi: 10.1016/j.applthermaleng.2017.03.127 URL |
[11] |
CHONG D T, ZHAO Q B, YUAN F, et al. Research on the steam jet length with different nozzle structures[J]. Experimental Thermal and Fluid Science, 2015, 64:134-141.
doi: 10.1016/j.expthermflusci.2015.02.015 URL |
[12] |
WU X Z, YAN J J, SHAO S F, et al. Experimental study on the condensation of supersonic steam jet submerged in quiescent subcooled water: Steam plume shape and heat transfer[J]. International Journal of Multiphase Flow, 2007, 33(12):1296-1307.
doi: 10.1016/j.ijmultiphaseflow.2007.06.004 URL |
[13] |
KIM Y S, YOUN Y J. Experimental study of turbulent jet induced by steam jet condensation through a hole in a water tank[J]. International Communications in Heat and Mass Transfer, 2008, 35(1):21-29.
doi: 10.1016/j.icheatmasstransfer.2007.05.014 URL |
[14] |
PARK C K, SONG C H, JUN H G. Experimental investigation of the steam condensation phenomena due to a multi-hole sparger[J]. Journal of Nuclear Science and Technology, 2007, 44(4):548-557.
doi: 10.1080/18811248.2007.9711844 URL |
[15] |
AYA I, NARIAI H. Boundaries between regimes of pressure oscillation induced by steam condensation in pressure suppression containment[J]. Nuclear Engineering and Design, 1987, 99:31-40.
doi: 10.1016/0029-5493(87)90105-1 URL |
[16] | CHO S, SONG C H, PARK C K,, et al. Experimental study on dynamic pressure pulse in direct contact condensation of steam discharging into subcooled water [EB/OL]. (1998-01-20) [2020-08-01]. https://www.researchgate.net/publication/285905201_Experimental_study_on_dynamic_pressure_pulse_in_direct_contact_condensation_of_steam _discharging_into_subcooled_water. |
[17] |
GREGU G, TAKAHASHI M, PELLEGRINI M, et al. Experimental study on steam chugging phenomenon in a vertical sparger[J]. International Journal of Multiphase Flow, 2017, 88:87-98.
doi: 10.1016/j.ijmultiphaseflow.2016.09.020 URL |
[18] |
WANG L T, YUE X Y, CHONG D T, et al. Experimental investigation on the phenomenon of steam condensation induced water hammer in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2018, 91:451-458.
doi: 10.1016/j.expthermflusci.2017.10.036 URL |
[19] |
KERNEY P J, FAETH G M, OLSON D R. Penetration characteristics of a submerged steam jet[J]. AIChE Journal, 1972, 18(3):548-553.
doi: 10.1002/(ISSN)1547-5905 URL |
[20] |
XU Q, GUO L J, CHANG L. Mechanisms of pressure oscillation in steam jet condensation in water flow in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2017, 110:643-656.
doi: 10.1016/j.ijheatmasstransfer.2017.03.017 URL |
[21] |
XU Q, GUO L J, ZOU S F, et al. Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66:808-817.
doi: 10.1016/j.ijheatmasstransfer.2013.07.083 URL |
[22] |
ZHAO Q B, CHEN W X, YUAN F, et al. Pressure oscillation and steam cavity during the condensation of a submerged steam jet[J]. Annals of Nuclear Energy, 2015, 85:512-522.
doi: 10.1016/j.anucene.2015.05.032 URL |
[23] |
CHONG D T, ZHAO Q B, YUAN F, et al. Experimental and theoretical study on the second dominant frequency in submerged steam jet condensation[J]. Experimental Thermal and Fluid Science, 2015, 68:744-758.
doi: 10.1016/j.expthermflusci.2015.07.011 URL |
[24] |
QIU B B, YAN J J, LIU J P, et al. Experimental investigation on the second dominant frequency of pressure oscillation for sonic steam jet in subcooled water[J]. Experimental Thermal and Fluid Science, 2014, 58:131-138.
doi: 10.1016/j.expthermflusci.2014.07.002 URL |
[25] |
CHUN M H, KIM Y S, PARK J W. An investigation of direct condensation of steam jet in subcooled water[J]. International Communications in Heat and Mass Transfer, 1996, 23(7):947-958.
doi: 10.1016/0735-1933(96)00077-2 URL |
[26] |
HONG S J, PARK G C, CHO S, et al. Condensation dynamics of submerged steam jet in subcooled water[J]. International Journal of Multiphase Flow, 2012, 39:66-77.
doi: 10.1016/j.ijmultiphaseflow.2011.10.007 URL |
[27] | 张社荣, 孔源, 王高辉. 水下和空中爆炸冲击波传播特性对比分析[J]. 振动与冲击, 2014, 33(13):148-153. |
ZHANG Sherong, KONG Yuan, WANG Gaohui. Comparative analysis on propagation characteristics of shock wave induced by underwater and air explosions[J]. Journal of Vibration and Shock, 2014, 33(13):148-153. |
[1] | 李嘉, 李华聪, 王玥. 变汽液比条件下高速燃油离心泵非定常特性分析研究[J]. 上海交通大学学报, 2022, 56(5): 622-634. |
[2] | 牟介刚a,吴振兴a,周佩剑a,谷云庆a,吴登昊b,任芸b. 自吸离心泵蜗壳内瞬态流动特性[J]. 上海交通大学学报(自然版), 2018, 52(4): 461-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||