上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (12): 1673-1688.doi: 10.16183/j.cnki.jsjtu.2021.397
所属专题: 《上海交通大学学报》2021年“电气工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
杨博1, 俞磊1, 王俊婷1, 束洪春1, 曹璞璘1(), 余涛2,3
收稿日期:
2021-10-08
出版日期:
2021-12-28
发布日期:
2021-12-30
通讯作者:
曹璞璘
E-mail:pulincao_kust@sina.com
作者简介:
杨 博(1988-),男,云南省昆明市人,教授,主要从事新能源发电/储能系统优化与控制,以及人工智能在智能电网中的应用研究.
基金资助:
YANG Bo1, YU Lei1, WANG Junting1, SHU Hongchun1, CAO Pulin1(), YU Tao2,3
Received:
2021-10-08
Online:
2021-12-28
Published:
2021-12-30
Contact:
CAO Pulin
E-mail:pulincao_kust@sina.com
摘要:
建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化 (AMRFO) 算法获取最优Pareto解集,其具有丰富多样的搜索机制,个体更新机制以及先进的Pareto解筛选机制,针对该模型能够获得更加优异的高质量解.为回避权重系数人为设置主观性带来的影响,采用基于马氏距离的理想决策点法进行Pareto最优解集决策.最后,基于IEEE 33, 69节点配电网和孤网运行的IEEE 33, 69节点配电网进行仿真分析.研究结果表明:与传统的多目标智能优化算法相比,AMRFO算法能够获得分布更加广泛、均匀的Pareto前沿,在兼顾经济性的同时,配电网的电压分布、有功功率损耗的改善效果显著优于其他算法.
中图分类号:
杨博, 俞磊, 王俊婷, 束洪春, 曹璞璘, 余涛. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688.
YANG Bo, YU Lei, WANG Junting, SHU Hongchun, CAO Pulin, YU Tao. Optimal Sizing and Placement of Distributed Generation Based on Adaptive Manta Ray Foraging Optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1673-1688.
表2
IEEE 33节点配电网气象数据
节点 | 年平均 风速/ (m·s-1) | 年平均 辐射量/ (MJ·m-2) | 节点 | 年平均 风速/ (m·s-1) | 年平均 辐射量/ (MJ·m-2) |
---|---|---|---|---|---|
1 | 3.464 | 0.6179 | 18 | 4.437 | 0.6912 |
2 | 2.765 | 0.3120 | 19 | 4.616 | 0.3916 |
3 | 2.315 | 0.1270 | 20 | 4.675 | 0.5796 |
4 | 3.037 | 0.6776 | 21 | 4.893 | 0.5712 |
5 | 4.670 | 0.6893 | 22 | 1.487 | 0.5941 |
6 | 4.016 | 0.6949 | 23 | 4.712 | 0.6056 |
7 | 4.452 | 0.6991 | 24 | 3.967 | 0.6087 |
8 | 2.792 | 0.6963 | 25 | 4.595 | 0.6195 |
9 | 3.359 | 0.6984 | 26 | 3.808 | 0.6862 |
10 | 4.513 | 0.6752 | 27 | 4.156 | 0.6329 |
11 | 2.304 | 0.6981 | 28 | 2.654 | 0.6812 |
12 | 2.882 | 0.4695 | 29 | 2.679 | 0.6020 |
13 | 3.694 | 0.6262 | 30 | 4.458 | 0.6108 |
14 | 2.108 | 0.6695 | 31 | 2.779 | 0.2820 |
15 | 4.566 | 0.6983 | 32 | 3.1125 | 0.6993 |
16 | 3.683 | 0.7054 | 33 | 4.383 | 0.5712 |
17 | 1.333 | 0.6741 |
表3
IEEE 69节点配电网气象数据
节点 | 年平均 风速/ (m·s-1) | 年平均 辐射量/ (MJ·m-2) | 节点 | 年平均 风速/ (m·s-1) | 年平均 辐射量/ (MJ·m-2) |
---|---|---|---|---|---|
1 | 2.575 | 0.8029 | 36 | 2.891 | 0.4583 |
2 | 3.270 | 0.5895 | 37 | 3.157 | 0.5970 |
3 | 4.504 | 0.8487 | 38 | 4.112 | 0.9929 |
4 | 2.833 | 0.2275 | 39 | 3.957 | 0.8437 |
5 | 2.241 | 0.4133 | 40 | 2.279 | 0.4362 |
6 | 1.754 | 0.6670 | 41 | 1.404 | 0.25791 |
7 | 3.791 | 0.7575 | 42 | 3.387 | 0.7879 |
8 | 5.066 | 0.7679 | 43 | 5.762 | 0.9933 |
9 | 4.979 | 0.7717 | 44 | 4.437 | 0.9004 |
10 | 5.15 | 0.7279 | 45 | 4.416 | 0.9204 |
11 | 4.154 | 0.6508 | 46 | 2.151 | 0.5995 |
12 | 3.754 | 0.6141 | 47 | 3.191 | 0.7420 |
13 | 3.079 | 0.5775 | 48 | 3.612 | 0.7454 |
14 | 2.658 | 0.9079 | 49 | 2.041 | 0.6408 |
15 | 1.529 | 0.8395 | 50 | 1.670 | 0.4720 |
16 | 1.312 | 0.4912 | 51 | 1.191 | 0.5133 |
17 | 2.312 | 0.4862 | 52 | 3.133 | 0.5358 |
18 | 4.779 | 0.9379 | 53 | 4.804 | 0.8354 |
19 | 4.233 | 0.6991 | 54 | 2.387 | 0.5945 |
20 | 4.070 | 0.8316 | 55 | 1.879 | 0.2441 |
21 | 4.320 | 0.9141 | 56 | 2.766 | 0.4808 |
22 | 2.875 | 0.8666 | 57 | 1.033 | 0.4033 |
23 | 3.225 | 0.8379 | 58 | 0.908 | 0.1520 |
24 | 2.904 | 0.7133 | 59 | 0.883 | 0.3716 |
25 | 2.116 | 0.5120 | 60 | 2.162 | 0.8954 |
26 | 3.066 | 0.6204 | 61 | 2.216 | 0.5895 |
27 | 2.141 | 0.7229 | 62 | 1.066 | 0.3920 |
28 | 1.875 | 0.33291 | 63 | 1.612 | 0.42166 |
29 | 2.608 | 0.62791 | 64 | 1.125 | 0.66751 |
30 | 1.883 | 0.38254 | 65 | 1.358 | 1.01625 |
31 | 0.416 | 0.19208 | 66 | 1.595 | 0.65666 |
32 | 1.937 | 0.58833 | 67 | 2.058 | 0.64833 |
33 | 3.037 | 0.57666 | 68 | 2.225 | 0.29875 |
34 | 4.037 | 0.68125 | 69 | 1.425 | 0.49208 |
35 | 4.287 | 0.95416 |
表4
IEEE 33节点配电网规划方案
算法 | 光伏系统 | 燃料电池 | 微型燃气轮机 | 风电机组 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | 容量/ kW | 安装 节点 | 容量/ kW | 安装 节点 | #1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | ||||||||||||||
AMRFO | 289.79 | 11 | 419.74 | 25 | 395.14 | 30 | 399.55 | 12 | 101.39 | 26 | 69.38 | 16 | |||||||||||||
MRFO | 317.94 | 11 | 347.85 | 25 | 303.26 | 8 | 399.67 | 30 | 60.99 | 23 | 212.44 | 12 | |||||||||||||
NSGA-II | 649.20 | 3 | 401.55 | 32 | 8 | 16 | 382.85 | 9 | 334.64 | 31 | 453.68 | 22 | |||||||||||||
MOPSO | 218.14 | 16 | 134.63 | 15 | 50.64 | 18 | 50.41 | 6 | 519.05 | 25 | 414.64 | 21 | |||||||||||||
算法 | 目标函数适应度值 | 目标函数权重分配 | |||||||||||||||||||||||
f1/kW | f2(p.u.) | f3/kg | f4/美元 | f5(p.u.) | ωf1 | ωf2 | ωf3 | ωf4 | ωf5 | ||||||||||||||||
AMRFO | 2023.26 | 28.26 | 5.14×107 | 8.76×107 | 0.4837 | 0.1929 | 0.2194 | 0.2144 | 0.1947 | 0.1783 | |||||||||||||||
MRFO | 2167.09 | 33.98 | 4.44×107 | 7.82×107 | 0.5373 | 0.1822 | 0.2244 | 0.1845 | 0.2005 | 0.2082 | |||||||||||||||
NSGA-II | 4061.87 | 53.2 | 2.09×107 | 4.97×107 | 0.5685 | 0.2082 | 0.1994 | 0.1875 | 0.1619 | 0.2428 | |||||||||||||||
MOPSO | 27706.8 | 70.51 | 6.49×106 | 1.45×107 | 0.4251 | 0.2184 | 0.2173 | 0.1823 | 0.1993 | 0.1824 |
表5
IEEE 69节点配电网规划方案
算法 | 光伏系统 | 燃料电池 | 微型燃气轮机 | 风电机组 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | 容量/ kW | 安装 节点 | 容量/ kW | 安装 节点 | #1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | ||||||||||||||
AMRFO | 78.3 | 35 | 298.09 | 61 | 398 | 62 | 261.23 | 17 | 26.27 | 52 | 120.94 | 53 | |||||||||||||
MRFO | 416.19 | 58 | 370.51 | 61 | 385 | 62 | 379.23 | 12 | 269.88 | 30 | 162.38 | 21 | |||||||||||||
NSGA-II | 285.55 | 44 | 186.27 | 61 | 50.23 | 23 | 50.14 | 63 | 383.4 | 31 | 270.79 | 66 | |||||||||||||
MOPSO | 298.79 | 11 | 419.74 | 25 | 395 | 30 | 399.551 | 12 | 101.4 | 26 | 69.38 | 16 | |||||||||||||
算法 | 目标函数适应度值 | 目标函数权重分配 | |||||||||||||||||||||||
f1/kW | f2(p.u.) | f3/kg | f4/美元 | f5(p.u.) | ωf1 | ωf2 | ωf3 | ωf4 | ωf5 | ||||||||||||||||
AMRFO | 672.49 | 20.54 | 4.44×107 | 7.11×107 | 0.4278 | 0.2321 | 0.1923 | 0.2043 | 0.1559 | 0.2151 | |||||||||||||||
MRFO | 1664.82 | 25.22 | 7.59×107 | 8.54×107 | 0.7341 | 0.2067 | 0.1886 | 0.2071 | 0.2074 | 0.1899 | |||||||||||||||
NSGA-II | 3621.59 | 42.19 | 6.49×105 | 1.45×107 | 0.5912 | 0.2389 | 0.1871 | 0.1586 | 0.1552 | 0.2601 | |||||||||||||||
MOPSO | 1568.83 | 63.68 | 5.15×107 | 8.76×107 | 0.6246 | 0.1929 | 0.2194 | 0.2144 | 0.1947 | 0.1783 |
表6
孤网运行的IEEE 33节点配电网规划方案
算法 | 光伏系统 | 燃料电池 | 微型燃气轮机 | 风电机组 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | 容量/ kW | 安装 节点 | 容量/ kW | 安装 节点 | #1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | ||||||||||||||
AMRFO | 389.44 | 11 | 591.31 | 32 | 931 | 2 | 1496.99 | 6 | 285.4 | 18 | 205.05 | 23 | |||||||||||||
MRFO | 996.28 | 11 | 808.86 | 32 | 745 | 2 | 1480.38 | 6 | 290.1 | 18 | 244.47 | 23 | |||||||||||||
NSGA-II | 803.02 | 5 | 789.94 | 31 | 816 | 2 | 1455.51 | 31 | 207.54 | 3 | 200.57 | 22 | |||||||||||||
MOPSO | 806.63 | 11 | 269.74 | 32 | 1472 | 25 | 1500 | 2 | 200.05 | 19 | 200 | 23 | |||||||||||||
算法 | 目标函数适应度值 | 目标函数权重分配 | |||||||||||||||||||||||
f1/kW | f2(p.u.) | f3/kg | f4/美元 | f5(p.u.) | ωf1 | ωf2 | ωf3 | ωf4 | ωf5 | ||||||||||||||||
AMRFO | 1637.18 | 20.76 | 8.11×107 | 2.62×108 | 0.429 | 0.2311 | 0.1423 | 0.1931 | 0.1465 | 0.2867 | |||||||||||||||
MRFO | 2964.11 | 26.67 | 7.30×107 | 2.47×108 | 0.429 | 0.2145 | 0.2249 | 0.1638 | 0.1736 | 0.2229 | |||||||||||||||
NSGA-II | 6656.76 | 24.86 | 7.52×107 | 2.49×108 | 0.5658 | 0.1857 | 0.1204 | 0.2144 | 0.2131 | 0.2663 | |||||||||||||||
MOPSO | 3638.18 | 21.22 | 1.03×108 | 3.18×108 | 0.429 | 0.5065 | 0.1323 | 0.1459 | 0.1185 | 0.0966 |
表7
孤网运行的IEEE 69节点配电网规划方案
算法 | 光伏系统 | 燃料电池 | 微型燃气轮机 | 风电机组 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | 容量/ kW | 安装 节点 | 容量/ kW | 安装 节点 | #1容量/ kW | #1安装 节点 | #2容量/ kW | #2安装 节点 | ||||||||||||||
AMRFO | 987.98 | 31 | 504.89 | 61 | 949.14 | 17 | 777.86 | 2 | 340.98 | 43 | 399.03 | 37 | |||||||||||||
MRFO | 554.04 | 33 | 613.11 | 62 | 1151.47 | 2 | 837.24 | 64 | 463.36 | 49 | 283.74 | 30 | |||||||||||||
NSGA-II | 995.24 | 56 | 240.67 | 61 | 760.78 | 2 | 1337.41 | 8 | 200.26 | 29 | 426.32 | 3 | |||||||||||||
MOPSO | 842.87 | 44 | 898.96 | 61 | 890.52 | 2 | 1129.28 | 11 | 330.91 | 37 | 429.84 | 3 | |||||||||||||
算法 | 目标函数适应度值 | 目标函数权重分配 | |||||||||||||||||||||||
f1/kW | f2(p.u.) | f3/kg | f4/美元 | f5(p.u.) | ωf1 | ωf2 | ωf3 | ωf4 | ωf5 | ||||||||||||||||
AMRFO | 1711.12 | 23.87 | 6.13×107 | 1.90×108 | 0.5996 | 0.2093 | 0.1674 | 0.1953 | 0.2182 | 0.2095 | |||||||||||||||
MRFO | 3043.14 | 30.89 | 7.13×107 | 2.15×108 | 0.5555 | 0.166521 | 0.181594 | 0.184374 | 0.19593 | 0.27158 | |||||||||||||||
NSGA-II | 2240.92 | 24.57 | 6.95×107 | 2.29×108 | 0.5612 | 0.2206 | 0.1655 | 0.1879 | 0.2615 | 0.1642 | |||||||||||||||
MOPSO | 2482.11 | 27.345 | 6.89×107 | 2.23×108 | 0.4443 | 0.2913 | 0.1692 | 0.1659 | 0.1631 | 0.2102 |
[1] | YANG B, YU T, SHU H C, et al. Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers[J]. International Transactions on Electrical Energy Systems, 2019, 29(1):2697. |
[2] | 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22):76-83. |
SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22):76-83. | |
[3] | YANG B, WANG J T, CHEN Y X, et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook[J]. Journal of Energy Storage, 2020, 32:101814. |
[4] | 付学谦, 陈皓勇, 刘国特, 等. 分布式电源电能质量综合评估方法[J]. 中国电机工程学报, 2014, 34(25):4270-4276. |
FU Xueqian, CHEN Haoyong, LIU Guote, et al. Power quality comprehensive evaluation method for distributed generation[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(25):4270-4276. | |
[5] | 薛帅, 高厚磊, 郭一飞, 等. 大规模海上风电场的双层分布式有功控制[J]. 电力系统保护与控制, 2021, 49(3):1-9. |
XUE Shuai, GAO Houlei, GUO Yifei, et al. Bi-level distributed active power control for a large-scale wind farm[J]. Power System Protection and Control, 2021, 49(3):1-9. | |
[6] | 沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015, 30(S1):346-351. |
SHEN Xin, CAO Min. Research on the influence of distributed power grid for distribution network[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):346-351. | |
[7] | 曲绍杰, 王绍然, 刘明波, 等. 基于互补内点法的多目标静态电压稳定约束无功规划[J]. 电力系统保护与控制, 2010, 38(23):49-54. |
QU Shaojie, WANG Shaoran, LIU Mingbo, et al. Static voltage stability constrained multi-objective reactive power planning based on complementary interior point method[J]. Power System Protection and Control, 2010, 38(23):49-54. | |
[8] |
YANG B, YU L, CHEN Y X, et al. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey[J]. International Journal of Energy Research, 2021, 45(3):3615-3642.
doi: 10.1002/er.v45.3 URL |
[9] |
ABU-MOUTI F S, EL-HAWARY M E. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm[J]. IEEE Transactions on Power Delivery, 2011, 26(4):2090-2101.
doi: 10.1109/TPWRD.2011.2158246 URL |
[10] |
QUADRI I A, BHOWMICK S, JOSHI D. A hybrid teaching-learning-based optimization technique for optimal DG sizing and placement in radial distribution systems[J]. Soft Computing, 2019, 23(20):9899-9917.
doi: 10.1007/s00500-018-3544-8 URL |
[11] | 李珂, 邰能灵, 张沈习, 等. 考虑相关性的分布式电源多目标规划方法[J]. 电力系统自动化, 2017, 41(9):51-57. |
LI Ke, TAI Nengling, ZHANG Shenxi, et al. Multi-objective planning method of distributed generators considering correlations[J]. Automation of Electric Power Systems, 2017, 41(9):51-57. | |
[12] | 任洪伟, 韩丛英, 裴玮, 等. 基于多目标优化模型的分布式电源选址方案研究[J]. 电力系统保护与控制, 2013, 41(24):64-69. |
REN Hongwei, HAN Congying, PEI Wei, et al. Research on distributed generation locating based on multi-objective optimization model[J]. Power System Protection and Control, 2013, 41(24):64-69. | |
[13] |
KEFAYAT M, LASHKAR ARA A, NABAVI NIAKI S A. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources[J]. Energy Conversion and Management, 2015, 92:149-161.
doi: 10.1016/j.enconman.2014.12.037 URL |
[14] | 徐俊杰. 元启发式优化算法: 理论阐释与应用[M]. 合肥: 中国科学技术大学出版社, 2015. |
XU Junjie. Theoretical interpretation and application: Meta-heuristic optimization algorithm[M]. Hefei: University of Science and Technology of China Press, 2015. | |
[15] | 徐迅, 陈楷, 龙禹, 等. 考虑环境成本和时序特性的微网多类型分布式电源选址定容规划[J]. 电网技术, 2013, 37(4):914-921. |
XU Xun, CHEN Kai, LONG Yu, et al. Optimal site selection and capacity determination of multi-types of distributed generation in microgrid considering environment cost and timing characteristics[J]. Power System Technology, 2013, 37(4):914-921. | |
[16] |
DOAGOU-MOJARRAD H, GHAREHPETIAN G B, RASTEGAR H, et al. Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm[J]. Energy, 2013, 54:129-138.
doi: 10.1016/j.energy.2013.01.043 URL |
[17] |
UGRANLı F, KARATEPE E. Multiple-distributed generation planning under load uncertainty and different penetration levels[J]. International Journal of Electrical Power & Energy Systems, 2013, 46:132-144.
doi: 10.1016/j.ijepes.2012.10.043 URL |
[18] | 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12):3405-3411. |
WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12):3405-3411. | |
[19] | ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87:103300. |
[20] | 杨蕾, 吴琛, 黄伟, 等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设, 2020, 41(7):100-109. |
YANG Lei, WU Chen, HUANG Wei, et al. Pareto-based multi-objective reactive power optimization for power grid with high-penetration wind and solar renewable energies[J]. Electric Power Construction, 2020, 41(7):100-109. | |
[21] | YANEZ-BORJAS J J, MACHORRO-LOPEZ J M, CAMARENA-MARTINEZ D, et al. A new damage index based on statistical features, PCA, and mahalanobis distance for detecting and locating cables loss in a cable-stayed bridge[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9):2150127. |
[22] | 刘煌煌, 雷金勇, 蔡润庆, 等. 基于SVM-MOPSO混合智能算法的配电网分布式电源规划[J]. 电力系统保护与控制, 2014, 42(10):46-54. |
LIU Huanghuang, LEI Jinyong, CAI Runqing, et al. Distributed generation planning in distribution network based on hybrid intelligent algorithm by SVM-MOPSO[J]. Power System Protection and Control, 2014, 42(10):46-54. | |
[23] |
GOSWAMI S K, BASU S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Transactions on Power Delivery, 1992, 7(3):1484-1491.
doi: 10.1109/61.141868 URL |
[24] | 李亮, 唐巍, 白牧可, 等. 考虑时序特性的多目标分布式电源选址定容规划[J]. 电力系统自动化, 2013, 37(3):58-63. |
LI Liang, TANG Wei, BAI Muke, et al. Multi-objective locating and sizing of distributed generators based on time-sequence characteristics[J]. Automation of Electric Power Systems, 2013, 37(3):58-63. | |
[25] | 王丽萍, 邱飞岳. 复杂多目标问题的优化方法及应用[M]. 北京: 科学出版社, 2018. |
WANG Liping, QIU Feiyue. Complex multi-objective optimization and it’s applications[M]. Beijing: Science Press, 2018. | |
[26] | 胡旺, YEN Gary G, 张鑫. 基于Pareto熵的多目标粒子群优化算法[J]. 软件学报, 2014, 25(5):1025-1050. |
HU Wang, YEN Gary G, ZHANG Xin. Multiobjective particle swarm optimization based on Pareto entropy[J]. Journal of Software, 2014, 25(5):1025-1050. |
[1] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[2] | 周士超, 刘晓林, 熊展, 王旭, 蒋传文, 张沈习. 考虑韧性提升的交直流配电网线路加固和储能配置策略[J]. 上海交通大学学报, 2021, 55(12): 1619-1630. |
[3] | 严正1,孔祥瑞1,徐潇源1,谢伟2. 微型同步相量测量单元在智能配电网运行状态估计中的应用[J]. 上海交通大学学报(自然版), 2018, 52(10): 1195-1205. |
[4] | 李珂,邰能灵,张沈习. 基于改进粒子群算法的配电网综合运行优化[J]. 上海交通大学学报(自然版), 2017, 51(8): 897-902. |
[5] | 赵俊瑞,王占山,王继东,张化光. 微网故障特性分析及保护方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 913-922. |
[6] | 张翔1,程浩忠1,方陈2,张沈习1. 考虑主动管理模式的多目标分布式电源规划[J]. 上海交通大学学报(自然版), 2014, 48(09): 1231-1238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||