上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1352-1361.doi: 10.16183/j.cnki.jsjtu.2020.288
所属专题: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2020-09-07
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
杨肖峰
E-mail:xiaofeng.yang@cardc.cn
作者简介:
李 芹(1995-),女,山东省淄博市人,硕士生,从事高超声速飞行器表面催化效应研究.
基金资助:
LI Qin1,2, YANG Xiaofeng2(), DONG Wei1, DU Yanxia2
Received:
2020-09-07
Online:
2021-11-28
Published:
2021-12-03
Contact:
YANG Xiaofeng
E-mail:xiaofeng.yang@cardc.cn
摘要:
针对表面催化效应对高超声速飞行器气动热影响显著且难以准确预测的问题,采用理论分析和数值模拟相结合的方法,建立了含物理/化学吸附、Eley-Rideal(ER)和Langmuir-Hinshelwood(LH)复合的有限速率四步表面多相催化模型.基于该模型进行了高超声速圆柱绕流数值模拟,分析了物理和化学吸附位覆盖率对高焓空气流场表面催化反应速率和气动热的影响.结果表明:所发展的催化模型可有效提升气动热预测精准度;受各吸附、复合反应过程的交叉影响,表面覆盖率对气动热的影响是非线性的.所建模型基于真实的物理过程,能够反映材料催化属性的差异,可为高超声速飞行器热防护系统的轻量化、低冗余设计提供理论支撑.
中图分类号:
李芹, 杨肖峰, 董威, 杜雁霞. 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021, 55(11): 1352-1361.
LI Qin, YANG Xiaofeng, DONG Wei, DU Yanxia. Numerical Simulation of Influence of Adsorption on Surface Heterogeneous Catalysis Process of Hypersonic Vehicles[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1352-1361.
[1] |
BARBATO M, REGGIANI S, BRUNO C, et al. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3):412-420.
doi: 10.2514/2.6539 URL |
[2] | 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014. | |
[3] | 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. |
DONG Weizhong, LE Jialing, LIU Weixiong. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. | |
[4] | 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学力学天文学, 2019, 49(11):139-153. |
GUI Yewei. Combined thermal phenomena of hypersonic vehicle[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(11):139-153. | |
[5] | 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. |
GUI Yewei, LIU Lei, WEI Dong. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 38(4):641-650. | |
[6] |
ARMENISE I, BARBATO M, CAPITELLI M, et al. Surface recombination coefficients and boundary-layer hypersonic-flow calculations on different surfaces[J]. Journal of Spacecraft and Rockets, 2004, 41(2):310-313.
doi: 10.2514/1.9202 URL |
[7] |
ARMENISE I, BARBATO M, CAPITELLI M, et al. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3):465-476.
doi: 10.2514/1.18218 URL |
[8] |
YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453.
doi: 10.1016/j.actaastro.2018.03.055 URL |
[9] |
YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3):687-697.
doi: 10.2514/1.A34079 URL |
[10] |
YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869.
doi: 10.1016/j.ijheatmasstransfer.2019.118869 URL |
[11] | MARSCHALL J, MACLEAN M. Finite-rate surface chemistry model, I: Formulation and reaction system examples[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3783. |
[12] | KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]// 34th Thermophysics Conference. Reston, Virigina, USA: AIAA, 2000: 2366. |
[13] |
MILOS F S, RASKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34.
doi: 10.2514/3.497 URL |
[14] | NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3644. |
[15] | NORMAN P, SCHWARTZENTRUBER T. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows: Part II[C]// 43rd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2012: 3097. |
[16] |
LI K, LIU J, LIU W Q. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2015, 28(5):1355-1361.
doi: 10.1016/j.cja.2015.08.011 URL |
[17] | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):87-105. |
GUI Yewei, LIU Lei, DAI Guangyue, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):87-105. | |
[18] | KARL S, SCHRAMM J M, HANNEMANN K. High enthalpy cylinder flow in HEG: A basis for CFD validation[C]// Aiaa Fluid Dynamics Conference. Orlando, Florida, USA: AIAA, 2003: 4252. |
[19] |
MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474.
doi: 10.2514/1.A32327 URL |
[1] | 荣臻, 胡文杰, 邱云龙, 张玉剑, 王亦庄, 江中正, 陈伟芳. Φ120高超声速风洞流场校测[J]. 空天防御, 2022, 5(3): 58-64. |
[2] | 刘双喜, 王一冲, 朱梦杰, 李勇, 闫斌斌. 小弹目速度比下拦截高超声速飞行器微分对策制导律研究[J]. 空天防御, 2022, 5(2): 49-57. |
[3] | 田若岑, 张庆振, 郭云鹤, 程林. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74. |
[4] | 杨庶, 钱云霄, 杨婷. 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022, 56(11): 1427-1437. |
[5] | 易仕和, 丁浩林. 适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展[J]. 空天防御, 2021, 4(4): 1-13. |
[6] | 熊俊辉, 李克勇, 刘燚, 吉雨. 临近空间防御技术发展态势及突防策略[J]. 空天防御, 2021, 4(2): 82-. |
[7] | 魏黎明, 李晓龙, 赵征, 杜厦, 汪九州. 神经网络在吸气式高超声速导弹突防弹道设计上的应用[J]. 空天防御, 2018, 1(2): 14-17. |
[8] | 柳军, 符翔, 王晓燕. 一种半径可控的参数化三维前缘钝化设计方法研究[J]. 空天防御, 2018, 1(1): 18-24. |
[9] | 于永军a,徐锦法a,张梁a,熊智b. 基于改进KAZE特征的合成孔径雷达匹配算法[J]. 上海交通大学学报(自然版), 2015, 49(09): 1288-1292. |
[10] | 严立,戴欣怡,陈佳洛,王平阳,欧阳华. 基于计算统一设备架物Fortran的直接模拟蒙特卡洛方法并行优化[J]. 上海交通大学学报(自然版), 2013, 47(08): 1198-1204. |
[11] | 黄宜庆, 王莉, 孙长银. 具有极点约束的高超声速飞行器非脆弱 最优H2/LQR控制[J]. 上海交通大学学报(自然版), 2011, 45(03): 423-428. |
[12] | 孙勇,段广仁,张卯瑞,张泽. 基于拟能量的高超声速飞行器再入轨迹优化 [J]. 上海交通大学学报(自然版), 2011, 45(02): 262-0266. |
[13] | 李菁菁,任章,宋剑爽. 高超声速再入滑翔飞行器的模糊变结构控制 [J]. 上海交通大学学报(自然版), 2011, 45(02): 295-0300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||