上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1169-1174.doi: 10.16183/j.cnki.jsjtu.2020.254

所属专题: 《上海交通大学学报》2021年12期专题汇总专辑 《上海交通大学学报》2021年“自动化技术、计算机技术”专题

• • 上一篇    

基于改进遗传算法的光伏板清洁分级任务规划

李翠明(), 王宁, 张晨   

  1. 兰州理工大学 机电工程学院,兰州 730050
  • 收稿日期:2020-08-14 出版日期:2021-09-28 发布日期:2021-10-08
  • 作者简介:李翠明(1976-),女,甘肃省白银市人,副教授,主要从事机器人运动控制与路径规划研究;E-mail: li_goddess@163.com
  • 基金资助:
    甘肃省自然科学基金(18JR3RA139);甘肃省省级引导科技创新发展项目(2018ZX-13)

Hierarchical Mission Planning for Cleaning Photovoltaic Panels Based on Improved Genetic Algorithm

LI Cuiming(), WANG Ning, ZHANG Chen   

  1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2020-08-14 Online:2021-09-28 Published:2021-10-08

摘要:

针对利用移动清洁机器人对大面积光伏电站光伏板清洁作业时的任务规划问题,提出分区规划策略.根据风口、光照时长等环境因素对光伏电站采用基于清洁优先级的分级任务规划,利用Hamilton图将太阳能光伏板清洁问题转化为巡回旅行商问题(TSP).针对遗传算法效率低、容易过早收敛的缺点,提出锦标赛选择法与轮盘赌选择法相结合的混合选择算子和基于分段规则的交叉算子的改进遗传算法.采用改进遗传算法规划机器人清洁光伏电站的清洁顺序.实验结果表明,相比于自适应遗传算法,改进遗传算法的求解效率更高、结果更好.

关键词: 光伏电站, 清洁机器人, 任务规划, 遗传算法, 旅行商问题

Abstract:

Aimed at the mission planning for cleaning photovoltaic panels in large-area photovoltaic plants with mobile cleaning robots, a district planning strategy is hereby proposed. The photovoltaic plants, considering the position of wind gaps, the illumination time, and other environmental factors, adopt a hierarchical mission planning based on the cleaning priority, and use the Hamilton graph to turn the cleaning problem of photovoltaic panels into a travelling salesman problem (TSP). Considering the disadvantages of low efficiency and early convergence of the genetic algorithm, an improved genetic algorithm, which includes the hybrid selection operator combining the tournament selection with the roulette wheel selection and the crossover operator based on the segmentation rule is thus put forward. The improved genetic algorithm is applied to plan the cleaning order of robots to clean the photovoltaic panels. The experimental results show that in comparison with the adaptive genetic algorithm, the improved genetic algorithm has a higher efficiency and better results.

Key words: photovoltaic plants, cleaning robot, mission planning, genetic algorithm, travelling salesman problem (TSP)

中图分类号: