上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (7): 826-833.doi: 10.16183/j.cnki.jsjtu.2020.279
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“机械工程”专题
收稿日期:
2020-09-08
出版日期:
2021-07-28
发布日期:
2021-07-30
通讯作者:
聂伟荣
E-mail:niewrhappy@163.com
作者简介:
张润铎(1997-),男,河南省许昌市人,硕士生,主要从事智能探测与控制研究
基金资助:
ZHANG Runduo, NIE Weirong(), QIU Weixiang
Received:
2020-09-08
Online:
2021-07-28
Published:
2021-07-30
Contact:
NIE Weirong
E-mail:niewrhappy@163.com
摘要:
为实现微流体惯性开关在智能弹药引信系统中的应用,提出一种双向抗高过载微流体惯性开关,解决高冲击作用下由水银液滴分离造成的开关接触不稳定问题.基于微通道内水银液滴所受毛细力原理,设计蛇形缓冲通道与三级毛细阀结构.分析收缩型毛细阀与扩张型毛细阀中水银液滴的受力状态,建立矩形截面通道中水银液滴的静态阈值模型;采用用户定义函数(UDF)施加加速度载荷对开关进行有限元仿真.通过仿真分析可知,该惯性开关在典型正向勤务跌落载荷与典型反向勤务跌落载荷作用下,水银液滴可恢复至初始状态,不会产生液滴分离现象,表明开关具备可靠的抗高过载能力.采用两次离心试验完成微小水银液滴的制备与注液,对所制作的微流体开关样机进行Machete落锤冲击试验.试验结果表明:开关在典型正向冲击载荷与典型反向冲击载荷作用后,水银液滴未发生液滴分离现象,与仿真结果一致.
中图分类号:
张润铎, 聂伟荣, 丘伟祥. 双向抗高过载微流体惯性开关[J]. 上海交通大学学报, 2021, 55(7): 826-833.
ZHANG Runduo, NIE Weirong, QIU Weixiang. Microfluidic Inertial Switch Capable of Bidirectional Anti-High Overload[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 826-833.
表1
开关主要结构参数
参数 | 取值 | |||||
---|---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | |
b1/μm | 20 | 20 | 20 | 20 | 20 | 20 |
b2/μm | 300 | 300 | 300 | 300 | 300 | 300 |
b3/μm | 150 | 150 | 150 | 60 | 150 | 150 |
b4/μm | 20 | 25 | 25 | 25 | 35 | 25 |
l/μm | 250 | 250 | 50 | 250 | 250 | 250 |
h/μm | 50 | 50 | 50 | 50 | 50 | 50 |
ΔH/μm | 160 | 160 | 160 | 160 | 160 | 160 |
r/μm | - | - | - | - | - | 60 |
α1/(°) | -70 | -70 | -70 | -70 | -70 | -70 |
α2/(°) | 70 | 70 | 70 | 70 | 70 | 70 |
α3/(°) | -40 | -40 | -40 | -40 | -40 | -40 |
[1] | 范晨阳, 刘剑霏, 田中旺. 基于动电极翻转的MEMS万向惯性开关[J]. 探测与控制学报, 2019, 41(3): 76-80. |
FAN Chenyang, LIU Jianfei, TIAN Zhongwang. MEMS omnidirectional inertial switch based on moving electrodeove overturning[J]. Journal of Detection & Control, 2019, 41(3): 76-80. | |
[2] | 孔南, 席占稳, 聂伟荣, 等. 可识别载荷方位区间的MEMS万向惯性开关[J]. 探测与控制学报, 2017, 39(2): 13-18. |
KONG Nan, XI Zhanwen, NIE Weirong, et al. MEMS omni-directional inertial switch with load azimuth interval identify[J]. Journal of Detection & Control, 2017, 39(2): 13-18. | |
[3] |
LI J, WANG Y, LI Y, et al. A contact-enhanced MEMS inertial switch with electrostatic force assistance and multi-step pulling action for prolonging contact time[J]. Microsystem Technologies, 2018, 24(7): 3179-3191.
doi: 10.1007/s00542-018-3881-7 URL |
[4] | 黄刘, 聂伟荣, 王晓锋, 等. 抗高过载微流体惯性开关[J]. 光学精密工程, 2016, 24(3): 526-532. |
HUANG Liu, NIE Weirong, WANG Xiaofeng, et al. A microfluidic inertial switch with response characteristics to high acceleration[J]. Optics and Precision Engineering, 2016, 24(3): 526-532.
doi: 10.3788/OPE. URL |
|
[5] |
LI J J, NIE W R, LIU G W. Microfluidic inertial switch based on J-shape communicating vessels[J]. Microsystem Technologies, 2019, 25(3): 917-923.
doi: 10.1007/s00542-018-4030-z URL |
[6] |
SHEN T, LI J J, HUANG L, et al. Dynamic flow characteristics in U-type anti-high overload microfluidic inertial switch[J]. Microfluidics and Nanofluidics, 2019, 23(3): 1-14.
doi: 10.1007/s10404-018-2168-8 URL |
[7] |
SHEN T, ZHANG D X, HUANG L, et al. An automatic-recovery inertial switch based on a gallium-indium metal droplet[J]. Journal of Micromechanics and Microengineering, 2016, 26(11): 115016.
doi: 10.1088/0960-1317/26/11/115016 URL |
[8] |
XU H Y, ZHAO Y L, ZHANG K, et al. A capacitive MEMS inclinometer sensor with wide dynamic range and improved sensitivity[J]. Sensors, 2020, 20(13): 3711.
doi: 10.3390/s20133711 URL |
[9] |
NIE W R, LIU G W, ZHANG R D. Microfluidic inertial switch with delay response characteristics[J]. Journal of Physics: Conference Series, 2020, 1507:102001.
doi: 10.1088/1742-6596/1507/10/102001 URL |
[10] | 李嘉杰, 聂伟荣, 刘国伟. 高阈值长脉宽响应的微流体惯性开关[J]. 光学精密工程, 2019, 27(1): 101-109. |
LI Jiajie, NIE Weirong, LIU Guowei. Microfluidic inertial switch with high threshold and long pulse-width response[J]. Optics and Precision Engineering, 2019, 27(1): 101-109.
doi: 10.3788/OPE. URL |
|
[11] |
HUANG L, NIE W R, WANG X F, et al. Feature coefficient prediction of micro-channel based on artificial neural network[J]. Microsystem Technologies, 2017, 23(6): 2297-2305.
doi: 10.1007/s00542-016-3067-0 URL |
[12] |
SHEN T, HUANG L, WANG J. Analysis and experiment of transient filling flow into a rectangular microchannel on a rotating disk[J]. Microfluidics and Nanofluidics, 2016, 20(4): 1-12.
doi: 10.1007/s10404-015-1676-z URL |
[13] | 张伟锋. 石英MEMS传感器湿法刻蚀工艺及设备制造技术研究[J]. 电子工业专用设备, 2020, 49(2): 29-33. |
ZHANG Weifeng. Research on wet etching process and equipment manufacturing technology of quartz MEMS sensor[J]. Equipment for Electronic Products Manufacturing, 2020, 49(2): 29-33. | |
[14] |
EHIASARIAN A P. High-power impulse magnetron sputtering and its applications[J]. Pure and Applied Chemistry, 2010, 82(6): 1247-1258.
doi: 10.1351/PAC-CON-09-10-43 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||