上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (6): 741-749.doi: 10.16183/j.cnki.jsjtu.2020.083
所属专题: 《上海交通大学学报》2021年“金属学与金属工艺”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2020-03-30
出版日期:
2021-06-28
发布日期:
2021-06-30
通讯作者:
余建波
E-mail:jbyu@tongji.edu.cn
作者简介:
周俊杰(1996-),男,浙江省金华市人,硕士生,主要研究方向为机器视觉、图像处理
基金资助:
Received:
2020-03-30
Online:
2021-06-28
Published:
2021-06-30
Contact:
YU Jianbo
E-mail:jbyu@tongji.edu.cn
摘要:
针对实际生产中测量刀具磨损需要人工操作、停机检测等问题,开发了一个基于机器视觉的加工刀具磨损测量系统.首先提出基于Laplacian算子边缘信息的Otsu分割算法将图像二值化,再通过基于形态学的Canny算子边缘检测粗定位及图像配准提取清晰的刀具磨损区域.最后,使用基于Zernike矩的亚像素边缘检测方法提高测量精度,并通过主曲线方法拟合亚像素边缘点得到光滑的边缘曲线,实现了刀具磨损量的在线测量.实际加工过程中的刀具磨损测试结果表明,该系统检测自动化程度高、运行速度快、测量精度可以达到微米级,可以有效地应用于工业上对加工刀具磨损的实时监控.
中图分类号:
周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749.
ZHOU Junjie, YU Jianbo. Online Measurement of Machining Tool Wear Based on Machine Vision[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 741-749.
[1] |
HOU Q L, SUN J, HUANG P L. A novel algorithm for tool wear online inspection based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9/10/11/12):2415-2423.
doi: 10.1007/s00170-018-3080-9 URL |
[2] |
GARCÍA-ORDÁS M T, ALEGRE E, GONZÁLEZ-CASTRO V, et al. A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5/6/7/8):1947-1961.
doi: 10.1007/s00170-016-9541-0 URL |
[3] | 孙涛, 傅玉灿, 何磊, 等. 损伤容限型钛合金的切削加工性[J]. 上海交通大学学报, 2016, 50(7):1017-1022. |
SUN Tao, FU Yucan, HE Lei, et al. Cutting machinability for damage-tolerant titanium alloy[J]. Journal of Shanghai Jiao Tong University, 2016, 50(7):1017-1022. | |
[4] | 荣雪宁, 卢浩, 王明洋, 等. 基于刀盘扭转能量的土压平衡盾构刀具磨损分析[J]. 上海交通大学学报, 2019, 53(8):965-970. |
RONG Xuening, LU Hao, WANG Mingyang, et al. Analysis of tools wear for earth pressure balance shield based on torque energy of cutterhead[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8):965-970. | |
[5] |
KONG D D, CHEN Y J, LI N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1/2/3/4):175-190.
doi: 10.1007/s00170-016-9070-x URL |
[6] |
SIMON G D, DEIVANATHAN R. Early detection of drilling tool wear by vibration data acquisition and classification[J]. Manufacturing Letters, 2019, 21:60-65.
doi: 10.1016/j.mfglet.2019.08.006 URL |
[7] |
RMILI W, OUAHABI A, SERRA R, et al. An automatic system based on vibratory analysis for cutting tool wear monitoring[J]. Measurement, 2016, 77:117-123.
doi: 10.1016/j.measurement.2015.09.010 URL |
[8] |
LI Z X, LIU R, WU D Z. Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning[J]. Journal of Manufacturing Processes, 2019, 48:66-76.
doi: 10.1016/j.jmapro.2019.10.020 URL |
[9] |
LIU M K, TSENG Y H, TRAN M Q. Tool wear monitoring and prediction based on sound signal[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9/10/11/12):3361-3373.
doi: 10.1007/s00170-019-03686-2 URL |
[10] |
DUTTA S, PAL S K, SEN R. Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images[J]. Measurement, 2016, 77:388-401.
doi: 10.1016/j.measurement.2015.09.028 URL |
[11] |
ZHU K P, YU X L. The monitoring of micro milling tool wear conditions by wear area estimation[J]. Mechanical Systems and Signal Processing, 2017, 93(93):80-91.
doi: 10.1016/j.ymssp.2017.02.004 URL |
[12] |
LI L H, AN Q B. An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J]. Measurement, 2016, 79:44-52.
doi: 10.1016/j.measurement.2015.10.029 URL |
[13] |
DAI Y Q, ZHU K P. A machine vision system for micro-milling tool condition monitoring[J]. Precision Engineering, 2018, 52:183-191.
doi: 10.1016/j.precisioneng.2017.12.006 URL |
[14] |
XIE X, GE S L, XIE M Y, et al. An improved industrial sub-pixel edge detection algorithm based on coarse and precise location[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(5):2061-2070.
doi: 10.1007/s12652-019-01232-2 URL |
[15] |
KUMAR B M, RATNAM M M. Machine vision method for non-contact measurement of surface roughness of a rotating workpiece[J]. Sensor Review, 2015, 35(1):10-19.
doi: 10.1108/SR-01-2014-609 URL |
[16] |
HASTIE T, STUETZLE W. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406):502-516.
doi: 10.1080/01621459.1989.10478797 URL |
[17] | MEHTA S, SINGH R A, MOHATA Y, et al. Measurement and analysis of tool wear using vision system[C]// 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA) . Piscataway, NJ, USA: IEEE, 2019: 45-49. |
[1] | 孙棪伊, 范文晶, 曾远帆, 干兴业, 汤日佳, 韩锐. 基于Harris角点检测的装填靶标识别方法[J]. 空天防御, 2022, 5(4): 87-91. |
[2] | 牛牧, 许黎明, 赵达, 范帆. 基于工件轮廓图像的砂轮磨损在线检测方法[J]. 上海交通大学学报, 2021, 55(3): 221-228. |
[3] | 王旭烽, 汤日佳, 孙棪伊, 干兴业, 张玉鑫. 导弹自动装填技术研究综述[J]. 空天防御, 2021, 4(2): 34-. |
[4] | 陈浩, 王新杰, 王炅, 席占稳, 聂伟荣. V型电热驱动器理论模型及动态特性[J]. 上海交通大学学报, 2021, 55(10): 1263-1271. |
[5] | 彭聪, 刘彬, 周乾. 基于机器视觉和盲源分离的机械故障检测[J]. 上海交通大学学报, 2020, 54(9): 953-960. |
[6] | 汪韬,贡亮,张经纬,吴林立梓,马志宏,杨刚,毛雨晗,洪骏,刘成良. 基于自定义聚类的水稻剑叶夹角测量[J]. 上海交通大学学报(自然版), 2018, 52(8): 961-968. |
[7] | 薛梦霞,刘士荣,王坚. 基于机器视觉的动态多目标识别[J]. 上海交通大学学报(自然版), 2017, 51(6): 727-733. |
[8] | 白瑞峰, 房朝晖, 靳荔成, 于赫洋, 张拓迷. 融合机器视觉的工业机器人虚拟平台构建[J]. 实验室研究与探索, 2017, 36(5): 246-249. |
[9] | 闵永智1,肖本郁1,党建武1,殷超1,岳彪1,马宏锋2. 轨道扣件缺失的机器视觉快速检测方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1268-1272. |
[10] | 王秀平1,2,白瑞林1,刘子腾1. 由任意平行四边形确定摄像机内参数的方法[J]. 上海交通大学学报(自然版), 2015, 49(03): 366-370. |
[11] | 蔡艳1,叶连祥2,孙大为1,田华2,朱俊杰1,胡志云2. 基于改进的Zernike矩亚像素边缘提取算法外螺纹非接触测量[J]. 上海交通大学学报(自然版), 2014, 48(10): 1468-1472. |
[12] | 蒋如意, 刘洪涛, 胡文, 王石刚. 改进的图像距离变换方法在车道检测中应用[J]. 上海交通大学学报(自然版), 2012, 46(09): 1450-1454. |
[13] | 吴一全, 张晓杰, 吴诗婳. 基于混沌弹性粒子群优化与基于分解的二维交叉熵阈值分割[J]. 上海交通大学学报(自然版), 2011, 45(03): 301-0307. |
[14] | 薛海虹,陈滨津,孙锟,余建国,王威琪. 心脏超声虚拟内窥镜图像预处理技术 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1061-1067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||