[1] |
杨峰, 郑丽涛, 王家琦, 等. 双层无迹卡尔曼滤波[J]. 自动化学报, 2019,45(7):1386-1391.
|
|
YANG Feng, ZHENG Litao, WANG Jiaqi, et al. Double layer unscented Kalman filter[J]. Acta Automatica Sinica, 2019,45(7):1386-1391.
|
[2] |
李建, 何黎明, 蔡云泽. 带有等式状态约束的多传感器数据融合算法[J]. 上海交通大学学报, 2014,48(7):893-898.
|
|
LI Jian, HE Liming, CAI Yunze. Multi-sensor data fusion algorithm with state equality constraints[J]. Journal of Shanghai Jiao Tong University, 2014,48(7):893-898.
|
[3] |
胡兵, 杨明, 郭林栋, 等. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报, 2019,53(2):81-86.
|
|
HU Bing, YANG Ming, GUO Lindong, et al. Glo-bal localization for intelligent vehicles using ground SURF[J]. Journal of Shanghai Jiao Tong University, 2019,53(2):81-86.
|
[4] |
LI K L, CHANG L B, HU B Q. A variational Bayesian-based unscented Kalman filter with both adaptivity and robustness[J]. IEEE Sensors Journal, 2016,16(18):6966-6976.
|
[5] |
AGAMENNONI G, NEBOT E M. Robust estimation in non-linear state-space models with state-dependent noise[J]. IEEE Transactions on Signal Processing, 2014,62(8):2165-2175.
|
[6] |
CHEN B D, LIU X, ZHAO H Q, et al. Maximum correntropy Kalman filter[J]. Automatica, 2017,76:70-77.
|
[7] |
LI X R, JILKOV V P. Survey of maneuvering target tracking. Part V. Multiple-model methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(4):1255-1321.
|
[8] |
DONG P, JING Z L, LEUNG H, et al. Variational Bayesian adaptive cubature information filter based on Wishart distribution[J]. IEEE Transactions on Automatic Control, 2017,62(11):6051-6057.
|
[9] |
IZANLOO R, FAKOORIAN S A, YAZDI H S, et al. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise [C]//2016 Annual Conference on Information Science and Systems (CISS). Princeton, NJ, USA: IEEE, 2016: 500-505.
|
[10] |
BILIK I, TABRIKIAN J. MMSE-based filtering in presence of non-Gaussian system and measurement noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(3):1153-1170.
|
[11] |
TZIKAS D G, LIKAS A C, GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008,25(6):131-146.
|
[12] |
潘泉, 胡玉梅, 兰华, 等. 信息融合理论研究进展: 基于变分贝叶斯的联合优化[J]. 自动化学报, 2019,45(7):1207-1223.
|
|
PAN Quan, HU Yumei, LAN Hua, et al. Information fusion progress: Joint optimization based on variational Bayesian theory[J]. Acta Automatica Sinica, 2019,45(7):1207-1223.
|
[13] |
PICHé R, S?RKKā S, HARTIKAINEN J. Recursive outlier-robust filtering and smoothing for nonli-near systems using the multivariate Student-t distribution [C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012: 1-6.
|
[14] |
YUN P, WU P L, HE S. Pearson type VII distribution-based robust Kalman filter under outliers interference[J]. IET Radar, Sonar & Navigation, 2019,13(8):1389-1399.
|
[15] |
HUANG Y L, ZHANG Y G, SHI P, et al. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019,49(10):2082-2096.
|
[16] |
ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009,54(6):1254-1269.
|
[17] |
SUN J Y, KABAN A, GARIBALDI J M. Robust mixture modeling using the Pearson type VII distribution [C]//The 2010 International Joint Conference on Neural Networks (IJCNN). Barcelona, Spain: IEEE, 2010: 1-7.
|
[18] |
GOLUB G H, VAN LOAN C F. Matrix computations[M]. 4th ed. Baltimore: The Johns Hopkins University Press, 2013.
|