上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (7): 688-696.doi: 10.16183/j.cnki.jsjtu.2019.077
王瑞,肖瑶,顾汉洋,叶亚楠
出版日期:
2020-07-28
发布日期:
2020-07-31
通讯作者:
顾汉洋,男,教授,博士生导师,电话(Tel.):021-34204917;E-mail:guhanyang@sjtu.edu.cn.
作者简介:
王瑞(1993-),男,陕西省宝鸡市人,硕士生,主要从事核能科学与工程研究.
WANG Rui,XIAO Yao,GU Hanyang,YE Yanan
Online:
2020-07-28
Published:
2020-07-31
摘要: 采用Reynolds应力模型针对螺旋管内的单相流动周向非均匀传热现象开展数值模拟研究.基于与螺旋管传热实验数据的对比,验证该数值计算的正确性.研究发现:螺旋管周向传热分布随着重力加速度与离心力加速度之比(?)的变化而变化.导致这种现象的原因可能是螺旋管周向传热分布受离心力和重力的共同作用,?的变化引起了合力方向的变化,进而影响了螺旋管的周向传热分布;?是影响螺旋管单相流动周向传热分布的主要因素;分析总结管壁周向温度分布随加速度比、螺旋直径、螺旋升角、螺旋管水力学直径等参数的变化规律及其成因.
中图分类号:
王瑞, 肖瑶, 顾汉洋, 叶亚楠. 螺旋管内单相流动周向非均匀传热现象的数值模拟[J]. 上海交通大学学报, 2020, 54(7): 688-696.
WANG Rui, XIAO Yao, GU Hanyang, YE Yanan. Numerical Simulation of Circumferential Non-Uniform Heat Transfer of Single-Phase Flow in Helical Pipes[J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 688-696.
[1]BERSANO A, FALCONE N, BERTANI C, et al. Conceptual design of a bayonet tube steam generator with heat transfer enhancement using a helical coiled downcomer [J]. Progress in Nuclear Energy, 2018, 108: 243-252. [2]GOU J L, MA H F, YANG Z J, et al. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets[J]. Annals of Nuclear Energy, 2017, 110: 648-667. [3]ZHANG Y, WANG D, LIN J, et al. Development of a computer code for thermalhydraulic design and analysis of helically coiled tube once-through steam generator [J]. Nuclear Engineering and Technology, 2017, 49(7): 1388-1395. [4]HARDIK B K, BABURAJAN P K, PRABHU S V. Local heat transfer coefficient in helical coils with single phase flow [J]. International Journal of Heat & Mass Transfer, 2015, 89: 522-538. [5]XIAO Y, HU Z X, CHEN S, et al. Experimental investigation and prediction of post-dryout heat transfer for steam-water flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2018, 127: 515-525. [6]XIAO Y, HU Z X, CHEN S, et al. Experimental study on dryout characteristics of steam-water flow in vertical helical coils with small coil diameters[J]. Nuclear Engineering and Design, 2018, 335: 303-313. [7]XIAO Y, HU Z X, CHEN S, et al. Experimental investigation of boiling heat transfer in helically coiled tubes at high pressure[J]. Annals of Nuclear Energy, 2018, 113: 409-419. [8]马越, 李晓伟, 吴莘馨.高温气冷堆螺旋管式直流蒸汽发生器传热管壁面热点数值分析[J].工程热物理学报, 2013, 34(7): 1331-1334. MA Yue, LI Xiaowei, WU Xinxin, Numerical analysis of the hot spot of the heat transfer tube wall in an HTGR helical tube once through steam generator[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1331-1334. [9]史建新, 孙宝芝, 刘尚华, 等.蒸汽发生器热工特性非轴对称分布数值模拟[J].哈尔滨工程大学学报, 2015, 36(10): 1351-1355. SHI Jianxin, SUN Baozhi, LIU Shanghua, et al. Numerical simulation on the non-axisymmetric distribution of thermal characteristics in a steam generator [J]. Journal of Harbin Engineering University, 2015, 36(10): 1351-1355. [10]JAYAKUMAR J S, MAHAJANI S M, MANDAL J C, et al. CFD analysis of single-phase flows inside helically coiled tubes[J]. Computers & Chemical Engineering, 2010, 34(4): 430-446. [11]邵莉. R134a在卧式螺旋管内的两相流动与传热特性研究[D]. 济南: 山东大学, 2009. SHAO Li. Study on two-phase flow and heat transfer characteristics of R134a in helical coils [D]. Jinan: Shandong University, 2009. [12]MORI Y S, NAKAYAMA W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59. [13]MORI Y, NAKAYAMA W. Study on forced convective heat transfer in curved pipes (3rd report, theoretical analysis under the condition of uniform wall temperature and practical formula)[J]. International Journal of Heat & Mass Transfer, 1967, 10(5): 681-695. |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[3] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[4] | 张宇, 王晓亮. 基于径向点插值方法的柔性螺旋桨气动弹性模拟[J]. 上海交通大学学报, 2020, 54(9): 924-934. |
[5] | . 半潜式钻井平台风载特征及影响因素分析[J]. 海洋工程装备与技术, 2019, 6(3): 548-. |
[6] | 郁程,董小倩,杨晨俊. 侧推器体积力模型及其应用[J]. 上海交通大学学报(自然版), 2018, 52(3): 291-296. |
[7] | 李懿霖,宋保维. 空化器直径对超空泡航行器空泡性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(12): 1488-1492. |
[8] | 米百刚,詹浩. 先进飞行器动导数数值模拟新方法[J]. 上海交通大学学报(自然版), 2016, 50(04): 619-624. |
[9] | 刘承江1,王永生1,古成中2. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报(自然版), 2016, 50(01): 91-97. |
[10] | 刘晗a,马宁a,b*,邵闯a,顾解忡a,b. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 115-122. |
[11] | 周振龙,朱锡,张帅. 螺旋桨CFD不确定度及叶形对桨叶变形的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 74-80. |
[12] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[13] | 田文龙,宋保维,毛昭勇. 水下航行器海流发电装置叶轮的数值仿真[J]. 上海交通大学学报(自然版), 2013, 47(08): 1306-1311. |
[14] | 蒋兰芳a,刘红b,鲁聪达b,牟介刚b,郭超b. 船用柴油机阻燃式防爆阀的压力降分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 889-893. |
[15] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 524
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 927
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||