上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (4): 421-429.doi: 10.16183/j.cnki.jsjtu.2020.04.011

• 学报(中文) • 上一篇    下一篇

基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测

薛晗,邵哲平,潘家财,张锋   

  1. 集美大学 航海学院, 福建 厦门 361021
  • 发布日期:2020-04-30
  • 通讯作者: 薛晗(1982-),女,福建省厦门市人,讲师,研究方向为船舶智能控制.电话(Tel.):15159240716;E-mail:imlmd@163.com.
  • 基金资助:
    国家自然科学基金(51579114),福建省自然科学基金(2018J05085)资助项目

Vessel Traffic Flow Prediction Based on CFA-GRNN Algorithm

XUE Han,SHAO Zheping,PAN Jiacai,ZHANG Feng   

  1. Institute of Navigation, Jimei University, Xiamen 361021, Fujian, China
  • Published:2020-04-30

摘要: 为了给海事部门提供科学准确的船舶交通流量预测,本文提出一种基于文化萤火虫算法(CFA)来优化广义回归神经网络(GRNN)的算法(CFA-GRNN),对船舶交通流量进行预测分析.介绍了基于自动识别系统(AIS)的航道交通流量统计方法.利用快速排斥试验和跨立试验来判断船舶轨迹是否穿过航道某一断面的观测线,并将AIS数据中的经纬度数据转换为墨卡托平面坐标系数据.研究了GRNN的实现原理,CFA以GRNN输出均方差为适应度函数,以GRNN的输入层和隐含层中的权值、隐含层和输出层中的权值、隐含层的阈值及输出层的阈值为编码进行优化,进化目标是得到最合适、最优的神经网络结构.利用AIS收集统计到并经过预处理后的数据, 应用CFA-GRNN对舟山螺头通航的船舶进行交通流量预测, 并对试验结果和误差进行了统计分析.结果表明:CFA-GRNN与GRNN和萤火虫优化广义回归神经网络相比,泛化性能好,不易陷入局部最优,预测结果精度更高.本研究对船舶交通流量进行预测分析有着十分重要的理论和实际意义.

关键词: 船舶交通流量预测;广义回归神经网络;文化算法;萤火虫算法

Abstract: In order to provide the maritime department with the scientific and accurate prediction of the essel traffic flow, this paper proposes an algorithm based on the cultural firefly algorithm (CFA) to optimize the generalized regression neural network (GRNN) to predict vessel traffic flow. This paper introduces the statistial method of fairway traffic flow based on automatic indentity system (AIS). Fast rejection test and cross stand test are used to judge whether the ship track passes through the observation line of a certain cross section of the channel. The latitude and longitude data in the AIS data is converted to the Mercator plane coordinate system. The realization principle of GRNN is studied. CFA takes the output mean square error of GRNN as fitness function. Its encoding takes the weight value in the input and hidden layers, the weight value in the hidden layer and the output layer, the threshold of the hidden layer and the threshold of the output layer. Its evolutionary goal is to get the most suitable and optimal structure of GRNN. With the statistics and pretreatment data collected from AIS, the CFA-GRNN is used to predict the vessel traffic flow, and the experimental results and errors are analyzed. The results show that CFA-GRNN has better generalization performance and higher accuracy of the prediction results than GRNN and firely algorithm-GRNN, and is not easy to fall into local optimum. This study is of theoretical and practical significance for forecasting and analyzing ship traffic flow.

Key words: vessel traffic flow prediction; general regression neural network (GRNN); cultural algorithm; firefly algorithm (CFA)

中图分类号: