[1]万年丰.智能车多车协作算法研究[D]. 上海: 上海交通大学, 2010.
WAN Nianfeng. Study on cooperation algorithm for multi-intelligent vehicles[D]. Shanghai: Shanghai Jiao Tong University, 2010.
[2]CHI T, ZHANG C. A strategy of multi-robot formation and obstacle avoidance in unknown environment[C]//International Conference on Information and Automotion. Ningbo: IEEE, 2016: 1455-1460.
[3]PARK B, YOO S J. Adaptive leader-follower formation control of mobile robots with unknown skidding and slipping effects[J]. International Journal of Control Automation and Systems, 2015, 13(3): 587-594.
[4]REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J]. Journal of Guidance Control and Dy-namics, 2004, 27(1): 73-82.
[5]JI J, KHAJEPOUR A, MELEK W. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964.
[6]WEN G, CHEN P, LIU Y. Formation control with obstacle avoidance for a class of stochastic multiagent systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5847-5855.
[7]曲成刚, 曹喜滨, 张泽旭.人工势场和虚拟领航者结合的多智能车体编队[J]. 哈尔滨工业大学学报, 2014, 46(5): 46-50.
QU Chenggang, CAO Xibin, ZHANG Zexu. Multi-agent system formation integrating virtual leaders into artificial potentials[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 46-50.
[8]RYO T, TORU N. Formation control of multi-agent system considering obstacle avoidance[C]//Confe-rence of the Society of Instrument and Control Engineers of Japan. Kanazawa, Japan: IEEE, 2017: 446-451.
[9]SABATTINI L, SECCHI C, FANTUZZI C. Arbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformation[J]. Autonomous Robots, 2011, 30(4): 385-397.
[10]吴云华, 牛康, 李磊, 等. 基于3D-APF和约束动力学的无人机编队飞行控制[J]. 系统工程与电子技术, 2018, 40(5): 1104-1108.
WU Yunhua, NIU Kang, LI Lei, et al. Formation flight control of UAV based on 3D-APF and constraint dynamics[J]. System Engineering and Electronics, 2018, 40 (5): 1104-1108.
[11]CHEN Y, YU J, SU X, et al. Path planning for multi-UAV formation[J]. Journal of Intelligent and Robotic Systems, 2015, 77(1): 229-246.
[12]潘无为, 姜大鹏, 庞永杰, 等.人工势场和虚拟结构结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2): 326-334.
PAN Wuwei, JIANG Dapeng, PANG Yongjie, et al. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. Acta Armamentarii, 2017, 38(2): 326-334.
[13]LI C, JIANG X, WANG W, et al. A simplified car-following model based on the artificial potential field[J]. Procedia Engineering, 2016, 137: 13-20.
[14]LI S, ZHENG Y, LI K. Dynamical modeling and distributed control of connected and automated ve-hicles: Challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
[15]李亮, 贾钢, 宋健, 等. 汽车动力学稳定性控制研究进展[J]. 机械工程学报, 2013, 49 (24): 95-107.
LI Liang, JIA Gang, SONG Jian, et al. Progress on vehicle dynamics stability control system[J]. Journal of Mechnical Engineering, 2013, 49 (24): 95-107.
[16]BESSELINK B, JOHANSSON K. String stability and a delay-based spacing policy for vehicle platoons subject to disturbances[J]. IEEE Transactions on Automatic Control, 2017, 62(9): 4376-4391. |