[1]BRINKSMEIER E, WERNER F. Monitoring of grinding wheel wear[J]. CIRP Annals, 1992, 41(1): 373-376.
[2]ROWE W. Principles of modern grinding technology [M]. New York: William Andrew, 2013: 113-122.
[3]MARINESCU I, HITCHINER M, UHLMANN E, et al. Handbook of machining with grinding wheels [M]. Florida: CRC Press, 2006: 83-85.
[4]LI B Z, NI J M, YANG J G, et al. Study on high-speed grinding mechanisms for quality and process efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5): 813-819.
[5]SU J, TARNG Y. Measuring wear of the grinding wheel using machine vision [J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(2): 50-60.
[6]ARUNACHALAM N, RAMAMOORTHY B. Texture analysis for grinding wheel wear assessment using machine vision [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2007, 221(3): 419-430.
[7]SHEN J, WANG J, JIANG B, et al. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic [J]. Wear, 2015, 332: 788-793.
[8]HWANG T, WHITENTON E, HSU N, et al. Acoustic emission monitoring of high speed grinding of silicon nitride [J]. Ultrasonics, 2000, 38(4): 614-619.
[9]LIAO T, TING C, QU J, et al. A wavelet-based methodology for grinding wheel condition monitoring[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3): 580-592.
[10]FENG J, KIM B S, SHIH A, et al. Tool wear monitoring for micro-end grinding of ceramic materials[J]. Journal of Materials Processing Technology, 2009, 209(11): 5110-5116.
[11]XU L M, XU K Z, CHAI Y D. Identification of grinding wheel wear signature by a wavelet packet decomposition method[J]. Journal of Shanghai Jiao Tong University (Science), 2010, 15(3): 323-328.
[12]WANG J J, FENG P F, ZHA T J. Process monitoring in precision cylindrical traverse grinding of slender bar using acoustic emission technology[J]. Journal of Mechanical Science and Technology, 2017, 31(2): 859-864.
[13]YANG Z, YU Z. Grinding wheel wear monitoring based on wavelet analysis and support vector machine [J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(2): 107-121.
[14]石建, 丁宁. 基于声发射技术的砂轮磨损状况在线检测[J]. 长春大学学报, 2013, 23(8): 931-936.
SHI Jian, DING Ning. On-line detection of the state of grinding wheel wear based on acoustic emission technique[J]. Journal of Changchun University, 2013, 23(8): 931-936.
[15]ARRIANDIAGA A, PORTILLO E, SáNCHEZ J, et al. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process[J]. Sensors, 2014, 14(5): 8756-8778.
[16]MOIA D, THOMAZELLA I, AGUIAR P, et al. Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(2): 627-640.
[17]CHOI T, SUBRAHMANYA N, LI H, et al. Ge-neralized practical models of cylindrical plunge grinding processes [J]. International Journal of Machine Tools and Manufacture, 2008, 48(1): 61-72.
[18]YAN L, ZHOU Z, JIANG F, et al. The application of three-dimensional surface parameters to characterizing grinding wheel topography [J]. Advanced Materials Research, 2010, 126(1): 603-608.
[19]QIAO G, DONG G, ZHOU M. Simulation and assessment of diamond mill grinding wheel topography [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9): 2085-2093.
[20]PAN Y, ZHAO Q, GUO B. On-machine measurement of the grinding wheels’ 3D surface topography using a laser displacement sensor [C]//7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. International Society for Optics and Photonics, Harbin, China: SPIE, 2014: 9281-9290.
[21]资嘉磊, 黄红武, 盛晓敏. 超高速平面磨削振动特性试验研究[J]. 机械与电子, 2006, 24(11): 10-12.
ZI Jialei, HUANG Hongwu, SHENG Xiaomin. Study on the vibration characteristic of ultra-high speed surface grinding[J]. Machinery & Electronics, 2006, 24(11): 10-12.
[22]JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning [M]. New York: Springer, 2013: 68-71.
[23]BREIMAN L. Random forests [J]. Machine Learn-ing, 2001, 45(1): 5-32.
[24]KUHN M, JOHNSON K. Applied predictive modeling [M]. New York: Springer, 2013: 20-24. |