[1]曾婧扬. 孤立波作用下海堤越浪流数值模拟[D]. 上海: 上海交通大学, 2013.
ZENG Jingyang. Numerical simulation of overtopping flow against sea dikes under solitary waves[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[2]SYNOLAKIS C E. The runup of long waves[D]. Los Angeles, California, USA: California Institute of Technology, 1986.
[3]宣瑞韬. 海啸波爬高的水槽实验研究[D]. 上海: 上海交通大学, 2013.
XUAN Ruitao. An experimental study on run-up of tsunami waves in wave flume[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[4]王贺, 吴卫, 刘桦. 等波高双孤立波直墙爬高的数值模拟[J]. 力学季刊, 2015, 36(1): 26-39.
WANG He, WU Wei, LIU Hua. Numerical simulation of run-up of double solitary waves with the same height on vertical wall[J]. Chinese Quarterly of Mechanics, 2015, 36(1): 26-39.
[5]刘博, 郑东生. 波流共同作用下多孔介质海床动力响应的解析解[J]. 工程地质学报, 2012, 20(5): 674-681.
LIU Bo, JENG Dongsheng. Analytical solution for dynamic response of porous seabed combined wave and current loadings[J]. Journal of Engineering Geology, 2012, 20(5): 674-681.
[6]JENG D S, YE J H, ZHANG J S, et al. An integrated model for the wave-induced seabed response around marine structures: Model verifications and applications[J]. Coastal Engineering, 2013, 72: 1-19.
[7]ZHANG J S, ZHANG C, JENG D S. Three-dimensional model for wave-induced dynamic pore pressure around monopile foundation[C]//Numerical Analysis and Applied Mathematics (ICNAAM 2012). New York, USA: American Institute of Physics, 2012: 1472-1475.
[8]张军, 周香莲, 颜宇光, 等. 波浪作用下管线-海床模型动态响应及液化[J]. 上海交通大学学报, 2014, 48(11): 1621-1626.
ZHANG Jun, ZHOU Xianglian, YAN Yuguang, et al. Numerical study of wave-induced dynamic soil response and liquefaction[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1621-1626.
[9]胡翔, 陈锦剑, 王建华. 短峰波作用下饱和海床中的单桩响应分析[J]. 上海交通大学学报, 2016, 50(11): 1737-1741.
HU Xiang, CHEN Jinjian, WANG Jianhua. Analysis of a single pile response in a saturated seabed under short-crested wave[J]. Journal of Shanghai Jiao Tong University, 2016, 50(11): 1737-1741.
[10]陈宝清, 张金凤, 史小康. 基于OpenFOAM的波浪作用下海床动力响应[J]. 中国港湾建设, 2017, 37(3): 1-5.
CHEN Baoqing, ZHANG Jinfeng, SHI Xiaokang. Numerical simulation for the dynamic response of seabed under waves based on the OpenFOAM[J]. China Harbour Engineering, 2017, 37(3): 1-5.
[11]JENG D S, LIN Y S. Wave-induced pore pressure around a buried pipeline in Gibson soil: Finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1559-1578.
[12]ZHAO H Y, JENG D S, ZHANG H J, et al. 2-D integrated numerical modeling for the potential of solitary wave-induced residual liquefaction over a sloping porous seabed[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(1): 1-18.
[13]ZHAO H Y, JENG D S. Numerical study of wave-induced soil response in a sloping seabed in the vicinity of a breakwater[J]. Applied Ocean Research, 2015, 51: 204-221.
[14]YOUNG Y L, XIAO H, MADDUX T. Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part I. Experimental study[J]. Marine Geology, 2010, 269(3/4): 107-118.
[15]XIAO H, YOUNG Y L, PRVOST J H. Parametric study of breaking solitary wave induced liquefaction of coastal sandyslopes[J]. Ocean Engineering, 2010, 37(17/18): 1546-1553.
[16]GAO F P, HAN X T, CAO J, et al. Submarine pipeline lateral instability on a sloping sandy seabed[J]. Ocean Engineering, 2012, 50: 44-52.
[17]JENG D S, POSTMA P F, LIN Y S. Stresses and deformation of buried pipeline under wave loading[J]. Journal of Transportation Engineering, 2001, 127(5): 398-407.
[18]JENG D S. Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(8): 699-712. |