[1]LAI M C, LOMBARDO M V, BARON-COHEN S. Autism[J]. Lancet, 2014, 383(9920): 896-910.
[2]CANDS E J, RECHT B. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772.
[3]XU Y Y, YIN W T, WEN Z W, et al. An alternating direction algorithm for matrix completion with nonnegative factors[J]. Frontiers of Mathematics in China, 2012, 7(2): 365-384.
[4]RECHT B, R C. Parallel stochastic gradient algorithms for large-scale matrix completion[J]. Mathematical Programming Computation, 2013, 5(2): 201-226.
[5]曾广翔. 面向推荐系统的矩阵填充算法研究[D]. 合肥: 中国科学技术大学, 2015.
ZENG Guangxiang. Research of matrix completion algorithm for recommendation system[D]. Hefei: University of Science and Technology of China, 2015.
[6]YEGANLI S F, YU R. Image inpainting via singular value thresholding[C]//Signal Processing and Communications Applications Conference (SIU). Haspolat: IEEE, 2013: 1-4.
[7]LI W, ZHAO L, LIN Z J, et al. Non-local image inpainting using low-rank matrix completion[J]. Computer Graphics Forum, 2014, 34(6): 121-122.
[8]JI H, LIU C, SHEN Z, et al. Robust video denoising using low rank matrix completion[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2012: 1791-1798.
[9]ROOZGARD A, BARZIGAR N, VERMA P, et al. 3D medical image denoising using 3D block matching and low-rank matrix completion[C]//2013 Asilomar Conference on Signals, Systems and Computers. CA, USA: IEEE, 2013: 253-257.
[10]ELHAMIFAR E. High-rank matrix completion and clustering under self-expressive models[C]//Advances in Neural Information Processing Systems. Barcelona: Curran Associates, Inc. 2016: 73-81.
[11]FAN J C, CHOW T W S. Sparse subspace clustering for data with missing entries and high-rank matrix completion [J]. Neural Networks, 2017, 93: 36-44.
[12]BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
[13]BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[14]CAI J F, CANDS E J, SHEN Z W, et al. A singular value thresholding algorithm for matrix completion [J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[15]YANG C Y, ROBINSON D, VIDAL R. Sparse subspace clustering with missing entries [J]. Proceedings of the 32nd International Conference on Machine Learning, PMLR, 2015, 37: 2463-2472. |