[1]YIN S, JIANG Y, TIAN Y, et al. A data-driven fuzzy information granulation approach for freight volume forecasting[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1447-1456.
[2]LI P. Research on forecasting model of cargo throughput of port group in the upper Yangtze River[C]//Proceedings of the 6th International Conference on Logistics and Supply Chain Management. Hong Kong: Aussino Academic Publishing House, 2016: 106-113.
[3]ZHA X, CHAI Y, WITLOX F, et al. Container throughput time series forecasting using a hybrid approach[J]. Lecture Notes in Electrical Engineering, 2016, 359: 639-650.
[4]GAO Y, LUO M, ZOU G. Forecasting with model selection or model averaging: A case study for monthly container port throughput[J]. Transportmetrica A: Transport Science, 2016, 12(4): 366-384.
[5]吴丽彬, 晏启鹏. 短期货运预测模型研究[J]. 交通运输工程与信息学报, 2008, 6(1): 64-69.
WU Libin, YAN Qipeng. Study of short-term freight prediction model [J]. Journal of Transportation Engineering and Information, 2008, 6(1): 64-69.
[6]CHANG G, WANG S, XIAO X. Review of spatio-temporal models for short-term traffic forecasting[C]//2016 IEEE International Conference on Intelligent Transportation Engineering. Singapore: IEEE, 2016: 8-15.
[7]VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J. Spatio-temporal shortterm urban traffic volume forecasting using genetically optimized modular networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(5): 317-325.
[8]ZENG X, ZHANG Y. Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28: 359-371.
[9]WANG J, TSAPAKIS I, ZHONG C. A space-time delay neural network model for travel time prediction[J]. Engineering Applications of Artificial Intelligence, 2016, 52: 145-160.
[10]田保慧, 郭彬. 基于时空特征分析的短时交通流预测模型[J]. 重庆交通大学学报(自然科学版), 2016, 35(3): 105-111.
TIAN Baohui, GUO Bin. A short-term traffic flow prediction model based on spatio-temporal characteristics analysis[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(3): 105-111.
[11]HODGE V J, KRISHNAN R, AUSTIN J, et al. Short-term prediction of traffic flow using a binary neural network[J]. Neural Computing & Applications, 2014, 25(7/8): 1639-1655. |