[1]LIU J K, CHEN F X, CHEN Y M. Bifurcation ana-lysis of aeroelastic systems with hysteresis by incremental harmonic balance method [J]. Applied Mathematics and Computation, 2012, 219(5): 2398-2411.
[2]姚红良, 王重阳, 王帆, 等. 多频激励局部非线性系统响应求解的降维增量谐波平衡法[J]. 振动工程学报, 2015, 28(5): 741-747.
YAO Hongliang, WANG Chongyang, WANG Fan, et al. The dimension-reductive incremental harmonic balance method for solving the response of local nonlinear dynamic system with multi-frequency excitation [J]. Journal of Vibration Engineering, 2015, 28(5): 741-747.
[3]刘振皓.车辆复合行星传动系统动力学特性研究[D].湖北: 武汉大学, 2012.
LIU Zhenhao. Research on dynamic characteristics of vehicle compound planetary gear train sets [D]. Hubei: Wuhan University, 2012.
[4]刘江楠, 苏典, 龚佑发.基于MATLAB的齿轮传动系统振动与分岔理论分析[J]. 机械传动, 2016, 40(2): 19-22.
LIU Jiangnan, SU Dian, GONG Youfa. Analysis of the bifurcation and theory vibration of the gear transmission system based on the MATLAB [J]. Journal of Mechanical Transmission, 2016, 40(2): 19-22.
[5]ERITENEL T, PARKER R G. An investigation of tooth mesh nonlinearity and partial contact loss in gear pairs using a lumped-parameter model [J]. Mechanism and Machine Theory, 2012, 56: 28-51.
[6]ZHANG W, DING Q. Torsion vibration and parametric instability analysis of a spur gear system with time-varying and square nonlinearities [J]. International Journal of Applied Mechanics, 2014, 6(1): 1450007.
[7]DEL RINCON A F, VIADERO F, IGLESIAS M A, et al. A model for the study of meshing stiffness in spur gear transmissions[J]. Mechanism and Machine Theory, 2013, 61: 30-58.
[8]方禹鑫, 丁千, 张微.多齿侧间隙传动系统非线性特性研究[J].振动与冲击, 2016, 35(23): 29-34.
FANG Yuxin, DING Qian, ZHANG Wei. Non-linear dynamic features of a steering gear system with backlashes [J]. Journal of Vibration and Shock, 2016, 35(23): 29-34.
[9]COOLEY C G, PARKER R G. A review of planetary and epicyclic gear dynamics and vibrations research[J]. Applied Mechanics Reviews, 2014, 66(4): 040804.
[10]韩清凯, 于海, 孙伟.机械振动系统的现代动态设计与分析[M].北京: 科学出版社, 2010.
HAN Qingkai, YU Hai, SUN Wei. Modern dynamic design and analysis of mechanical vibration system [M].Beijing: Science Press, 2010. |