上海交通大学学报(自然版) ›› 2019, Vol. 53 ›› Issue (2): 153-160.doi: 10.16183/j.cnki.jsjtu.2019.02.005
余宏淦,黄小平,张永矿
出版日期:
2019-02-28
发布日期:
2019-02-28
通讯作者:
黄小平,男,副教授,E-mail:xphuang@sjtu.edu.cn.
作者简介:
余宏淦(1991-),男,湖北省咸宁市人,硕士生,主要研究方向为船舶结构强度与疲劳分析.E-mail:11966261@qq.com.
基金资助:
YU Honggan,HUANG Xiaoping,ZHANG Yongkuang
Online:
2019-02-28
Published:
2019-02-28
摘要: 以某超大型集装箱船驾驶室前椭圆形角隅为例,采用谱分析结合裂纹扩展方法预报角隅疲劳寿命.首先通过水动力和结构响应分析得到全船响应,获得角隅在不同工况下的应力分布,并依此选定可能的起裂位置.然后将全船分析结果作为ANSYS中建立的带裂纹角隅模型二次分析的边界条件,求解应力强度因子并采用最大周向应力准则(MCSC)得到角隅在不同工况下的裂纹扩展路径,在大量计算的基础上回归出相应的角隅裂纹应力强度因子经验公式.最后依据ABS船级社推荐的谱分析法构建疲劳载荷谱,采用单一曲线模型和所获得角隅裂纹应力强度因子经验公式预报角隅疲劳寿命,为角隅疲劳寿命的校核提供参考.
中图分类号:
余宏淦,黄小平,张永矿. 基于谱分析和裂纹扩展方法的舱口角隅疲劳寿命预报方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 153-160.
YU Honggan,HUANG Xiaoping,ZHANG Yongkuang. Fatigue Life Prediction of a Hatch Corner Based on the Spectral Analysis and Fatigue Crack Growth Approaches[J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 153-160.
[1] | 余小川, 唐永生, 李润培, 等. 8530TEU集装箱船船舯上甲板角隅疲劳寿命预估[J]. 中国造船, 2006, 47(4): 101-105. |
YU Xiaochuan, TANG Yongsheng, LI Runpei, et al. Fatigue life predication of upperdeck hatch corners in midship area of a 8530TEU Container Ship[J]. Ship Building of China, 2006, 47(4): 101-105. | |
[2] | 蔡乾亚, 杨永谦, 裘泳铭. 集装箱船舱口角隅的应力集中及其结构形式[J]. 上海交通大学学报, 1996, 30(8): 125-129. |
CAI Qianya, YANG Yongqian, QIU Yongming. Research on stress concentration and structure models of container ship hatch corner[J]. Journal of Shanghai Jiao Tong University, 1996, 30(8): 125-129. | |
[3] | 中国船级社. 集装箱船结构强度直接计算指南[M]. 北京: 人民交通出版社, 2005. |
CCS. Guidelines for direct strength analysis of container ship[M]. Beijing: China Communication Press, 2005. | |
[4] | MAO W. Development of a spectral method and a statistical wave model for crack propagation prediction in ship structures[J]. Journal of Ship Research, 2014, 58(2): 479-499. |
[5] | ABS. Guide for spectral-based fatigue analysis of vessels[M].Houston: ABS Plaza, 2016: 1-33. |
[6] | HUANG X, TORGEIR M, CUI T W. A unique crack growth rate curve method for fatigue life prediction of steel structures[J]. Ships and Offshore Structures, 2009, 4(2): 165-173. |
[7] | HUANG X, TORGEIR M, CUI W. An engineering model of fatigue crack growth under variable amplitude loading[J]. International Journal of Fatigue, 2008, 30(1): 2-10. |
[8] | HUANG X. Fatigue crack growth rate recommended in BS7910 and an unique crack growth rate curve under different load ratios[C]//American Society of Mechanical Engineers. San Antonio: ASME, 2007: 1-7. |
[9] | HUANG X, TORGEIR M. Improved modeling of the effect of R-ratio on crack growth rate[J]. International Journal of Fatigue, 2007, 29(4): 591-602. |
[10] | HU Zhiqiang, LI Runpei, QIN Hongde. Analysis on global hull strength and fatigue strength of hatch-corners for an 8530 TEU containership[J]. Shanghai Shipbuilding, 2006, 66(2): 16-20. |
[11] | ABS. Rules for building and classing steel vessels [M]. Huston: American Bureau of Shipping, 2010. |
[12] | SUMI Y, YANG C, WANG Z N. Morphological aspects of fatigue crack propagation. Part II. Effects of stress biaxiality and welding residual stress[J]. International Journal of Fracture, 1996, 82(3): 221-235. |
[13] | ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85(4): 527. |
[14] | SIH G C. Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture, 1974, 10(3): 305-321. |
[15] | BOUCHARD P O, BAY F, CHASTEL Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria[J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192(35/36): 3887-3908. |
[16] | BITTENCOURT T N, WAWRZYNEK P A, INGRAFFEA A R, et al. Quasi-automatic simulation of crack progation for 2D LEFM problems[J]. Engineering Fracture Mechanics, 1996, 55(2): 321-334. |
[17] | BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures [M]. London: British Standards Institution, 2005. |
[18] | DNV. Fatigue assessment of ship structures [M]. Norway: Det Norske Veritas, 2003. |
[19] | HUANG X, YAN X, WANG K. Discussion of fatigue loading spectrum on crack propogation in a ship detail[C]//American Society of Mechanical Engineers. San Francisco: ASME, 2014. |
[1] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[2] | 杨世平, 董梦瑜, 李飞. 一种双悬臂梁柔性销轴的微动疲劳研究[J]. 上海交通大学学报, 2021, 55(3): 236-248. |
[3] | 谭雪, 张辰, 徐文浩, 王福新, 文敏华. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342. |
[4] | 张强, 卢朝辉, 赵然, 伦培元. 基于初始缺陷的混凝土锈裂模型时变可靠度[J]. 上海交通大学学报, 2020, 54(4): 413-420. |
[5] | 王慧,井伟川,赵国超,金鑫. 基于灰色系统模型GM(1,1)改进Miner准则的液压支架底座疲劳寿命预测[J]. 上海交通大学学报, 2020, 54(1): 106-110. |
[6] | 丁然,李强. 基于损伤累积模型的可靠度保守估计方法[J]. 上海交通大学学报, 2019, 53(10): 1225-1229. |
[7] | 马网扣, 刘军. 新型立柱式生产储油平台桁架管节点疲劳分析[J]. 海洋工程装备与技术, 2018, 5(4): 252-258. |
[8] | 唐鸿远a,张臻b,c,邓运来a,b,c,叶凌英a,钱鹏伟b,c,赵龙a. 基于灰色系统理论的Al-Zn-Mg合金板材 疲劳寿命预测[J]. 上海交通大学学报(自然版), 2018, 52(2): 228-232. |
[9] | 段红燕,王智明,桑元成. III型裂纹裂尖应力场的内聚力模型[J]. 上海交通大学学报(自然版), 2017, 51(1): 113-. |
[10] | 李华祥. 疲劳谱分析方法及其在立柱式平台结构分析中的应用[J]. 海洋工程装备与技术, 2016, 3(6): 338-345. |
[11] | 王洪庆, 李德江, 傅强, 李磊, 张国栋, 杜之富. 半潜式平台立柱与浮筒连接节点疲劳可靠性分析[J]. 海洋工程装备与技术, 2016, 3(4): 227-235. |
[12] | 李宁, 杨伟, 李旭. 自升式平台地震响应分析方法研究[J]. 海洋工程装备与技术, 2016, 3(1): 31-38. |
[13] | 冯加果, 刘小燕, 王世圣, 谢文会. 基于ANSYS分析软件的海洋平台局部构造疲劳寿命评估研究[J]. 海洋工程装备与技术, 2015, 2(5): 325-331. |
[14] | 闫小顺,黄小平. 基于改进裂纹扩展模型的船舶焊接结构疲劳寿命可靠性预报[J]. 上海交通大学学报(自然版), 2015, 49(02): 214-219. |
[15] | 尹彦坤, 陈实, 李挺前. 随机波浪载荷下基于断裂力学的结构疲劳分析算法研究[J]. 海洋工程装备与技术, 2014, 1(3): 213-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||