上海交通大学学报(自然版) ›› 2019, Vol. 53 ›› Issue (3): 373-379.doi: 10.16183/j.cnki.jsjtu.2019.03.016
祁睿格1,何春霞1,付菁菁1,2,赵丽梅1,姜彩昀1
出版日期:
2019-03-28
发布日期:
2019-03-28
通讯作者:
何春霞,女,教授,博士生导师,E-mail: chunxiahe@tom.com.
作者简介:
祁睿格(1992-),女,黑龙江省齐齐哈尔市人,硕士生,主要研究方向为生物质复合材料.
基金资助:
QI Ruige,HE Chunxia,FU Jingjing,ZHAO Limei,JIANG Caiyun
Online:
2019-03-28
Published:
2019-03-28
摘要: 为了探讨3种无机纳米粒子(纳米碳酸钙(NPCC)、纳米蒙脱土(NMMT)和纳米氧化铝(NAL))对木粉/高密度聚乙烯(HDPE)木塑复合材料热学性能和力学性能的影响,采用模压成型方法制备木粉/HDPE木塑复合材料,利用综合热分析仪和热膨胀系数仪分析了木塑复合材料的热学性能,并测定了其力学性能.结果表明,3种无机纳米粒子对木粉/HDPE木塑复合材料的热学性能和力学性能均有一定影响.其中:添加NPCC可使木粉/HDPE木塑复合材料的线性热膨胀系数降低 38.95%,并具有较好的热稳定性,从而在受热过程中的起始热分解温度提高了 2.8℃,600℃时的残重率提高了 39.1%;同时,添加NPCC的木粉/HDPE木塑复合材料力学性能提高的幅度最大,其拉伸强度、弯曲强度和冲击强度分别提高了 32.86%、11.05% 和 35.32%.
中图分类号:
祁睿格,何春霞,付菁菁,赵丽梅,姜彩昀. 无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响[J]. 上海交通大学学报(自然版), 2019, 53(3): 373-379.
QI Ruige,HE Chunxia,FU Jingjing,ZHAO Limei,JIANG Caiyun. ffect of Inorganic Nanoparticles on the Thermal and Mechanical Properties of Wood Fiber/HDPE Composites[J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 373-379.
[1]CHETANACHAN W, SOOKKHO D, SUTTHITAVIL W, et al. PVC wood: A new look in construction[J]. Journal of Vinyl and Additive Technology, 2001, 7(3): 134-137. [2]PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 34-41. [3]王伟宏, 卢国军. 硅烷偶联剂处理玄武岩纤维增强木塑复合材料[J]. 复合材料学报, 2013, 30(S1): 315-320. WANG Weihong, LU Guojun. The silane coupling agent treatment of basalt fibers reinforced wood-plastic composite[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 315-320. [4]DEKA B K, MAJI T K. Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 686-693. [5]张娟, 宁莉萍, 杨红军, 等. 玻璃纤维含量对竹粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2016, 33(3): 477-485. ZHANG Juan, NING Liping, YANG Hongjun, et al. Effects of glass fiber content on properties of bamboo powder/HDPE composites[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 477-485. [6]WU Q, CHI K, WU Y, et al. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells[J]. Materials & Design, 2014, 60: 334-342. [7]DEY T K, TRIPATHI M. Thermal properties of silicon powder filled high-density polyethylene composites[J]. Thermochimica Acta, 2010, 502(1): 35-42. [8]PAN M Z, MEI C T, DU J, et al. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 128-134. [9]DEVI R R, MAJI T K. Interfacial effect of surface modified TiO2 and SiO2 nanoparticles reinforcement in the properties of wood polymer clay nanocomposites[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(3): 505-514. [10]DEKA B K, MAJI T K. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and phargamites karka nanocomposite[J]. Composites Science and Technology, 2010, 70(12): 1755-1761. [11]黄润州. 芯-表结构木塑复合材料机械性能与热膨胀性能的研究[D]. 南京: 南京林业大学, 2012. HUANG Runzhou. Mechanical and thermal expansion properties of the core-shell structure wood plastic composites[D]. Nanjing: Nanjing Forestry University, 2012. [12]李丽丽, 张晓虹, 王玉龙, 等. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟[J]. 物理学报, 2016, 65(19): 213-224. LI Lili, ZHANG Xiaohong, WANG Yulong, et al. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites[J]. Acta Physica Sinica, 2016, 65(19): 213-224. [13]WU L M, LIAO L B, L G H. Influence of interlayer cations on organic intercalation of montmorillonite[J]. Journal of Colloid and Interface Science, 2015, 454: 1-7. [14]刘永荣. Al2O3/HDPE导热复合材料的制备与性能研究[D]. 北京: 北京化工大学, 2010. LIU Yongrong. The prepation and property of alumina fiber/HDPE thermal conductibe polymer composite[D]. Beijing: Beijing University of Chemical Technology, 2010. [15]ZERIOUH A, BELKBIR L. Thermal decomposition of a moroccan wood under a nitrogen atmosphere[J]. Thermochimica Acta, 1995, 258: 213-218. [16]DIKOBE D G, LUYT A S. Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites[J]. Thermochimica Acta, 2017, 654: 40-50. [17]SWAIN S K, DASH S, KISKU S K, et al. Thermal and oxygen barrier properties of chitosan bionanocomposites by reinforcement of calcium carbonate nanopowder[J]. Journal of Materials Science & Technology, 2014, 30(8): 791-795. [18]唐艳军, 李友明, 宋晶, 等. 纳米/微米碳酸钙的结构表征和热分解行为[J]. 物理化学学报, 2007, 23(5): 717-722. TANG Yanjun, LI Youming, SONG Jing, et al. Structural characterization and thermal decomposition behavior of microsized and nanosized CaCO3[J]. Journal of Physical Chemistry, 2007, 23(5): 717-722. [19]刘继纯, 付梦月, 李晴媛, 等. 蒙脱土/聚苯乙烯复合材料的热分解成炭行为[J]. 复合材料学报, 2012, 29(6): 9-18. LIU Jichun, FU Mengyue, LI Qingyuan, et al. Pyrolytic charring behavior of montmorillonite/polystyrene composites[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 9-18. [20]CHANG M K. Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 96-101. [21]PICARD E, GAUTHIER H, GRARD J F, et al. Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites[J]. Journal of Colloid and Interface Science, 2007, 307(2): 364-376. [22]黄润州, 张洋. 无机填料/木粉/R-PE的复合材料热膨胀性能与弯曲性能的研究[J]. 木材加工机械, 2014, 25(6): 15-18. HUANG Runzhou, ZHANG Yang. The thermal expansion and flexural properties of wood plastic composites[J]. Wood Processing Machinery, 2014, 25(6): 15-18. [23]ASGARI M, ABOUELMAGD A, SUNDARARAJ U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites[J]. Applied Clay Science, 2017, 146: 439-448. [24]王文一. 无机纳米粒子/聚合物复合材料研究[D]. 北京: 北京化工大学, 2007. WANG Wenyi. Preparation and characterization of polymer filled with nano particles[D]. Beijing: Beijing University of Chemical Technology, 2007. [25]王芳, 朱旭, 王忠强, 等. 纳米CaCO3对动态硫化三元乙丙橡胶/聚丙烯复合材料的性能影响[J]. 塑料工业, 2017, 45(6): 89-92. WANG Fang, ZHU Xu, WANG Zhongqiang, et al. Effect of nano calcium carbonate on properties of dymically vulcanized EPDM/PP composites[J]. China Plastics Industry, 2017, 45(6): 89-92. |
[1] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[2] | 朱强,秦飞,王武荣,韦习成. 不同搭接顺序下三层板电阻点焊接头力学性能[J]. 上海交通大学学报, 2019, 53(9): 1122-1129. |
[3] | 张威,敖三三,罗震,郝志壮,陈瑶,冯梦楠,解龑. 焊接能量对铝镍超声波焊接接头性能的影响[J]. 上海交通大学学报, 2019, 53(9): 1130-1135. |
[4] | 何冠中,楼铭,马运五,李永兵. 铝钢电阻单元焊接头力学性能模拟[J]. 上海交通大学学报, 2019, 53(5): 616-623. |
[5] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[6] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[7] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[8] | 陈建稳1,周涵1,陈务军2,赵兵2,王明洋3. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 344-. |
[9] | 金雪,朱平,李晗,王庆. 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1297-1303. |
[10] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[11] | 郑钰,李宏烨,庄新村,赵震. 金属板料剪切试验方法及应用的研究现状[J]. 上海交通大学学报(自然版), 2014, 48(03): 422-426. |
[12] | 张克伟1,佘欢2,刘宏亮2,疏达2,王俊2. Si含量对高强高韧7050铝合金组织和力学性能的影响[J]. 上海交通大学学报(自然版), 2013, 47(11): 1712-1716. |
[13] | 范 永 丰. 有限淋滤作用下石灰处治膨胀土的力学性能[J]. 上海交通大学学报(自然版), 2013, 47(09): 1390-1394. |
[14] | 徐媛媛,桂宗彦,杲云,陆冲,程树军. 柠檬酸基聚酯/聚乳酸共混物的力学性能[J]. 上海交通大学学报(自然版), 2013, 47(05): 806-810. |
[15] | 钟宇a, b, 李云飞b, c. 表面活性剂对可食性葛根淀粉膜性能的影响[J]. 上海交通大学学报(自然版), 2012, 46(05): 813-818. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||