[1]周仲荣. 摩擦学发展前沿[M]. 北京: 科学出版社, 2006.
ZHOU Zhongrong. Frontiers of tribology[M]. Beijing: Sciences Press, 2006.
[2]QI H, FAN J, WANG J M, et al. Impact erosion by high velocity micro-particles on a quartz crystal[J]. Tribology International, 2015, 82: 200-210.
[3]ZAFAR S, SHARMA A K. Abrasive and erosive wear behavior of nanometric WC-12Co microwave clads[J]. Wear, 2016, 346-347: 29-45.
[4]LIU R, YAO J H, ZHANG Q L, et al. Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy[J]. Wear, 2015, 322-323: 41-50.
[5]BAKSHI S D, SHIPWAY P H, BHADESHIA H K D H. Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite[J]. Wear, 2013, 308(1/2): 46-53.
[6]孙志永, 周华, 程先华. 含有初始裂纹的低碳贝氏体钢的冲击韧性[J]. 上海交通大学学报, 2016, 50(7): 1000-1004.
SUN Zhiyong, ZHOU Hua, CHENG Xianhua. Impact thoughness of low-carbon bainitic steel with initial cracks[J]. Journal of Shanghai Jiao Tong University, 2016, 50(7): 1000-1004.
[7]高强, 吴渝英, 洪骎, 等. 短炭纤维对铜-石墨复合材料冲击值的影响[J]. 上海交通大学学报, 2002, 36(1): 36-38.
GAO Qiang, WU Yuying, HONG Qin, et al. Effect of short carbon fiber on the impact strength of copper-graphite composites[J]. Journal of Shanghai Jiao Tong University, 2002, 36(1): 36-38.
[8]WANG Z, CAI Z B, CHEN Z Q, et al. Low-velocity impact wear behavior of ball-to-flat contact under constant kinetic energy[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5669-5679.
[9]SUN Y, CAI Z B, CHEN Z Q, et al. Impact fretting wear of Inconel 690 tube with different supporting structure under cycling low kinetic energy[J]. Wear, 2017, 376-377: 625-633.
[10]CAI Z B, GUAN H D, CHEN Z Q, et al. Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity[J]. Tribology International, 2017, 105: 219-228.
[11]金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J].中国有色金属学报, 2015, 25(2): 280-292.
JIN Hexi, WEI Kexiang, LI Jianming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
[12]CRESSMAN D, TURY B, DOLL G L. Effects of surface treatments and coatings on tribological performance of Ti-6Al-4V in the mixed fretting and gross slip regimes[J]. Surface and Coatings Technology, 2015, 276: 260-265.
[13]WIKLUND U, HUTCHINGS I M. Investigation of surface treatments for galling protection of titanium alloys[J]. Wear, 2001, 251: 1034-1041.
[14]LI Z Y, CAI Z B, WU Y P, et al. Effect of nitrogen ion implantation dose on torsional fretting wear behavior of titanium and its alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 324-335.
[15]SAHOO R, JHA B B, SAHOO T K, et al. Effect of microstructural variation on dry sliding wear behavior of Ti-6Al-4V alloy[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 2092-2102.
[16]SAHOO R, JHAB B, SAHOOT K, et al. Effect of volume fraction of primary alpha phase on solid particle erosion behavior of Ti-6Al-4V alloy[J]. Tribology Transactions, 2015, 58(6): 1105-1118.
[17]姚小飞, 谢发勤, 韩勇, 等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 41(8): 1463-1466.
YAO Xiaofei, XIE Faqin, HAN Yong, et al. Effects of temperature on wear properties and friction coefficient of TC4 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(8): 1463-1466.
[18]ADEBIYID I, POPOOLAA P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloy-ing[J]. Materials & Design, 2015, 74: 67-75.
[19]蔡振兵, 王璋, 朱旻昊. 硬质涂层冲击、冲蚀性能的研究进展[J]. 机械工程学报, 2017, 53(24): 12-24.
CAI Zhenbing, WANG Zhang, ZHU Minhao. Review on impact and erosion wear research of hard coatings[J]. Journal of Mechanical Engineering, 2017, 53(24): 12-24.
[20]陈志强, 蔡振兵, 林映武, 等. 恒定动能作用下薄壁管的冲击微动磨损行为研究[J]. 机械工程学报, 2016, 52(15): 114-120.
CHEN Zhiqiang, CAI Zhenbing, LIN Yingwu, et al. Impact fretting wear behavior of thin-walled tube under constant low level kinetic energy[J]. Journal of Mechanical Engineering, 2016, 52(15): 114-120. |