上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (12): 1456-1463.doi: 10.16183/j.cnki.jsjtu.2017.12.008
焦学军,张朕,姜劲,王春慧,杨涵钧,徐凤刚,曹勇,傅嘉豪
出版日期:
2017-11-30
发布日期:
2017-11-30
基金资助:
JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao
Online:
2017-11-30
Published:
2017-11-30
摘要: 为了探究功能性近红外光谱技术(fNIRS)对相同动作的运动想象和运动执行区分可行性以及前额皮层对运动想象和运动执行分类准确率的影响,研究测量了15位受试者手臂伸展和手指敲击的运动想象过程和运动执行过程的前额皮层和运动功能皮层的血氧变化信号.提取均值,斜率,二次项系数和近似熵特征建立基于支持向量机的四分类模型.对应于手臂伸展和手指敲击的四分类模型,分别实现了87.65%和87.58%的分类准确率.相对于单独运动功能皮层区域建立的运动功能皮层-fNIRS-脑机接口,引入前额皮层血氧变化信息能显著提高脑机接口分类性能,且对手指敲击动作的提高效果大于手臂伸展动作.因此,前额皮层区域的血氧响应生理特征能提高fNIRS-脑机接口的分辨性能,同时验证了fNIRS-脑机接口应用于多种肢体动作脑功能活动提取的可行性.
中图分类号:
焦学军,张朕,姜劲,王春慧,杨涵钧,徐凤刚,曹勇,傅嘉豪. 基于功能性近红外光谱技术的脑机接口[J]. 上海交通大学学报(自然版), 2017, 51(12): 1456-1463.
JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao. The Brain-Computer Interface Using Functional Near-Infrared Spectroscopy[J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1456-1463.
[1]ASENSIO-CUBERO J, GAN J Q, PALANIAPPAN R. Multiresolution analysis over graphs for a motor imagery based online BCI game[J]. Computers in Biology & Medicine, 2016, 68: 21-26. [2]XU M, QI H, WAN B, et al. A hybrid BCI speller paradigm combining P300 potential and SSVEP blocking feature[J]. Journal of Neural Engineering, 2013, 10(2): 26001-26013. [3]LOTTE F, FALLER J, GUGER C, et al. Combining BCI with virtual reality: Towards new applications and improved BCI[M]. Berlin: Springer Berlin Heidelberg, 2012: 197-220. [4]TUMANOV K, GOEBEL R, MCKEL R, et al. fNIRS-based BCI for robot control[C]∥Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul: International Foundation for Autonomous Agents and Multiagent Systems, 2015: 1953-1954. [5]PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery[J]. Annals of Neurology, 2015, 77(5): 851-865. [6]BAMDAD M, ZARSHENAS H, AUAIS M A. Application of BCI systems in neurorehabilitation: A scoping review[J]. Disability & Rehabilitation Assistive Technology, 2015, 10(5): 1-10. [7]GAUME A, ABBASI M A, DREYFUS G, et al. Towards cognitive BCI: Neural correlates of sustained attention in a continuous performance task[C]∥2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier: IEEE, 2015: 1052-1055. [8]HAJIPOUR S S, SHAMSOLLAHI M B. Selection of efficient features for discrimination of hand movements from MEG using a BCI competition IV data set[J]. Frontiers in Neuroscience, 2012, 6(6): 42. [9]ZICH C, DEBENER S, KRANCZIOCH C, et al. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery[J]. NeuroImage, 2015, 114: 438-447. [10]POWER S D, FALK T H, CHAU T. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy[J]. Journal of Neural Engineering, 2010, 7(2): 1393-1402. [11]NASEER N, HONG K S. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface[C]∥2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 1780-1783. [12]CHAN A, EARLY C E, SUBEDI S, et al. Systematic analysis of machine learning algorithms on EEG data for brain state intelligence[C]∥Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. Washington: IEEE, 2015: 793-799. [13]HORTAL E,BEDA A, IEZ E, et al. Online classification of two mental tasks using a SVM-based BCI system[C]∥Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on. San Diego: IEEE, 2013: 1307-1310. [14]HENNRICH J, HERFF C, HEGER D, et al. Investigating deep learning for fNIRS based BCI[C]∥2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milano: IEEE, 2015: 2844-2847. [15]CHAE Y, JEONG J, JO S. Toward brain-actuated humanoid robots: Asynchronous direct control using an EEG-based BCI[J]. IEEE Transactions on Robotics, 2012, 28(5): 1131-1144. [16]MIN H C, LEE J S, HEO J, et al. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI[J]. Journal of Neuroscience Methods, 2016, 258: 104-113. [17]KHAN M J, HONG K S. Passive BCI based on drowsiness detection: An fNIRS study[J]. Biomedical Optics Express, 2015, 6(10): 4063-4078. [18]POWER S D, KUSHKI A, CHAU T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: Toward a three-state NIRS-BCI[J]. Bmc Research Notes, 2012, 5(1): 1-10. [19]AGUILAR J M, CASTILLO J, ELIAS D. EEG signals processing based on fractal dimension features and classified by neural network and support vector machine in motor imagery for a BCI[C]∥VI Latin American Congress on Biomedical Engineering CLAIB 2014. Paraná:Springer International Publishing, 2015: 615-618. [20]ZIMMERMANN R, MARCHAL-CRESPO L, EDELMANN J, et al. Detection of motor execution using a hybrid fNIRS-biosignal BCI: A feasibility study[J]. Journal of Neuroengineering & Rehabilitation, 2013, 10(1): 1-15. [21]NASEER N, HONG K S. Classification of functional near-infrared spectroscopy signals corresponding to right-and left-wrist motor imagery for development of a brain-computer interface.[J]. Neuroscience Letters, 2013, 553(8): 84-89. [22]KAISER V, BAUERNFEIND G, KREILINGER A, et al. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG[J]. Neuroimage, 2014, 85(1): 432-444. [23]SUZUKI M, MIYAI I, ONO T, et al. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study[J]. Neuroimage, 2008, 39(2): 600-607. [24]HARADA T, MIYAI I, SUZUKI M, et al. Gait capacity affects cortical activation patterns related to speed control in the elderly[J]. Experimental Brain Research, 2008, 193(3): 445-454. [25]OBRIG H, HIRTH C, JUNGE-HLSING J G, et al. Cerebral oxygenation changes in response to motor stimulation.[J]. Journal of Applied Physiology, 1996, 81(3): 1174-1183. [26]TARKKA I M, STOKIC D S. Left prefrontal cortex contributes to motor imagery: A pilot study[J]. Research in Neuroscience, 2013, 2(2): 19-23. [27]KANTHACK T F D, BIGLIASSI M, ALTIMARI L R. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: A functional near-infrared spectroscopy (fNIRS) study[J]. Motriz Revista De Educao Física, 2013, 19(3): 627-632. [28]WRIESSNEGGER S C, KURZMANN J, NEUPER C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study[J]. International Journal of Psychophysiology, 2008, 67(1): 54-63. [29]JANG K E, TAK S, JUNG J, et al. Wavelet minimum description length detrending for near-infrared spectroscopy.[J]. Journal of Biomedical Optics, 2009, 14(3): 659-660. [30]NISHIYORI R, BISCONTI S, ULRICH B. Motor cortex activity during functional motor skills: An fNIRS study[J]. Brain Topography, 2015, 29(1): 1-14. [31]KIRILINA E, JELLOW A,HEINE A, et al. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy[J]. NeuroImage, 2012, 61(1): 70-81. [32]CUI X, BRAY S, REISS A L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics[J]. Neuroimage, 2010, 49(4): 3039-3046. [33]JIAO X, BAI J, CHEN S, et al. Research on mental fatigue based on entropy changes in space environment[C]∥2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings. Tianjin: IEEE, 2012: 74-77. [34]BENARON D A, HINTZ S R, VILLRINGER A, et al. Noninvasive functional imaging of human brain using light[J]. Journal of Cerebral Blood Flow & Metabolism Official Journal of the International Society of Cerebral Blood Flow & Metabolism, 2000, 20(3): 469-477. [35]HONG K S, NASEER N, KIM Y H. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI[J]. Neuroscience Letters, 2014, 587: 87-92. |
[1] | 施裕升, 王晓科, 周宇泰, 蒋国韬, 徐天洋. 基于卡方检验与SVM的多雷达抗欺骗干扰方法[J]. 空天防御, 2022, 5(1): 108-114. |
[2] | 肖冉, 魏子清, 翟晓强. 基于支持向量机的办公建筑逐时能耗预测[J]. 上海交通大学学报, 2021, 55(3): 331-336. |
[3] | 朱东, 姜萍萍, 颜国正, 王志武, 韩玎, 赵凯, 华芳芳, 姚盛健, 丁紫凡, 周泽润. 人工肛门括约肌系统便意感知重建[J]. 上海交通大学学报, 2020, 54(8): 771-777. |
[4] | 陶正瑞, 党嘉强, 徐锦泱, 安庆龙, 陈明, 王力, 任斐. 基于支持向量机回归的曲面零件涡流测距标定方法[J]. 上海交通大学学报, 2020, 54(7): 674-681. |
[5] | 徐彬彬, 洪榛, 赵磊, 俞立. 网络化倒立摆系统的偏差攻击及其检测方法[J]. 上海交通大学学报, 2020, 54(7): 697-704. |
[6] | 胡晓强,仲训昱,张霄力,彭侠夫,何荧. 基于支持向量机辅助的四轴陀螺两级故障诊断方法[J]. 上海交通大学学报, 2020, 54(11): 1151-1156. |
[7] | 王江卓,徐文聪,李建勋,贺丰收,曹兰英,缪礼锋. 基于支持向量机的雷达电子支援措施系统点迹-航迹关联算法[J]. 上海交通大学学报, 2019, 53(9): 1091-1099. |
[8] | 马志宏,贡亮,林可,毛雨晗,吴伟,刘成良. 基于稻穗几何形态模式识别的在穗籽粒数估测[J]. 上海交通大学学报(自然版), 2019, 53(2): 239-246. |
[9] | 李春祥,裴杨从琪,殷潇. 基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测[J]. 上海交通大学学报, 2019, 53(10): 1249-1258. |
[10] | 李春祥,殷潇. 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报(自然版), 2018, 52(11): 1516-1523. |
[11] | 徐峰1,范春菊1,徐勋建2,李丽2,倪佳筠3. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报(自然版), 2018, 52(10): 1388-1395. |
[12] | 马天亮,徐添翼,高益,蔡萍. 基于支持向量机的热轧主电机风冷变频策略[J]. 上海交通大学学报(自然版), 2017, 51(5): 542-. |
[13] | 弓鹏伟1,费燕琼1,3,宋立博2. 基于多传感器信息融合的轮履混合移动机器人路况识别方法[J]. 上海交通大学学报(自然版), 2017, 51(4): 398-. |
[14] | 罗华毅,王景成,杨丽雯,李肖城. 基于时差系数的城市原水需水量预测应用[J]. 上海交通大学学报(自然版), 2017, 51(10): 1260-1267. |
[15] | 王秀青1,侯增广2,曾慧3,吕锋1,潘世英1. 基于多传感器信息融合的机器人故障诊断[J]. 上海交通大学学报(自然版), 2015, 49(06): 793-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||