[1]李激光, 张金栋, 黄海亮, 等. 高强汽车用钢的研究现状及发展趋势[J]. 材料导报, 2012(s1): 397-401.
LI Jiguang, ZHANG Jindong, HUANG Hailiang, et al. Research status and development trend of high strength steel for automotive use[J]. Materials Review, 2012(s1): 397-401.
[2]康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014, 49(12): 1-7.
KANG Yonglin, ZHU Guoming. Development trend of China’s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel, 2014, 49(12): 1-7.
[3]马鸣图, 易红亮. 高强度钢在汽车制造中的应用[J]. 热处理, 2011, 26(6): 9-20.
MA Mingtu, YI Hongliang. Application of high strength steel to manufacturing auto[J]. Heat Treatment, 2011, 26(6): 9-20.
[4]李扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25(13): 101-104.
LI Yang, LIU Hanwu, DU Yunhui, et al. Applications and developments of AHSS in automobile industry[J]. Materials Review, 2011, 25(13): 101-104.
[5]刁可山, 蒋浩民, 陈新平.基于成形特性的宝钢QP980试验研究及典型应用[J].锻压技术, 2012, 37(6): 113-115.
DIAO Keshan, JIANG Haomin, CHEN Xinping. Research and typical application of QP980 steel produced by BaoSteel based on formability[J]. Forging & Stamping Technology, 2012, 37(6): 113-115.
[6]HAO Q, WANG Y, JIA X, et al. Dynamic compression behavior and microstructure of a novel low-carbon quenching-partitioning-tempering steel[J]. Acta Metallurgica Sinica, 2014, 27(3): 444-451.
[7]TAN Z L, WANG K K, GAO G H, et al. Mechanical properties of steels treated by Q-P-T process incorporating carbide-free-bainite/martensite multiphase microstructure[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 191-196.
[8]WAGONER R H, LIM H, LEE M G. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20.
[9]张璐. 高强钢回弹预测中材料模型的适用性研究及回弹补偿的自动实现[D].上海: 上海交通大学材料科学与工程学院, 2012.
[10]ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effects[R]. CEGB Report, RD/B/N/731, Berkeley Nuclear Laboratories, Berkley UK, 1966.
[11]CHABOCHE J L,ROUSSELIER G. On the plastic and viscoplastic constitutive equations, Part I and Part II[J]. Journal of Pressure Vessel Technology, 1983, 105(2): 4719-4754.
[12]ZANG S L, GUO C, THUILLIER S, et al. A model of one-surface cyclic plasticity and its application to springback prediction[J]. International Journal of Mechanical Sciences, 2011, 53(6): 425-435.
[13]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686.
[14]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity and its application to springback simulation[J]. International Journal of Mechanical Sciences, 2003, 45(10): 1687-1702.
[15]SUN L, WAGONER R H. Complex unloading behavior: Nature of the deformation and its consistent constitutive representation[J]. International Journal of Plasticity, 2011, 27(7): 1126-1144.
[16]LEE J, LEE J Y, BARLAT F, et al. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels[J]. International Journal of Plasticity, 2013, 45(2): 140-159.
[17]XIAO Y Z, CHEN J, CAO J. A generalized thermodynamic approach for modeling nonlinear hardening behaviors[J]. International Journal of Plasticity, 2012, 38(6): 102-122.
[18]XIAO Y Z, CHEN J, ZHU X, et al. Modified maximum mechanical dissipation principle for rate-independent metal plasticity[J]. Journal of Applied Mechanics, 2013, 80(6): 061020.
[19]肖煜中.金属宏观本构能量原理研究及其在板料冲压成形数值模拟中的应用[D].上海: 上海交通大学材料科学与工程学院, 2013.
[20]Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual, Vol. I, II, and III, R8.0[M]. Livermore: Livermore Software Technology Corporation (LSTC), 2015.
[21]刘罡, 林忠钦, 张卫刚.薄板成形仿真动力显式算法的虚拟凸模速度分析[J]. 上海交通大学学报, 2000, 34(10): 1406-1409.
LIU Gang, LIN Zhongqin, ZHANG Weigang. Study on virtual punch velocity in simulation of sheet metal forming by explicit method[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1406-1409. |