上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (11): 1334-1339.doi: 10.16183/j.cnki.jsjtu.2017.11.008
晏佳伟,胡启,王振振,陈军
发布日期:
2017-11-30
基金资助:
YAN Jiawei,HU Qi,WANG Zhenzhen,CHEN Jun
Published:
2017-11-30
摘要: 针对第3代高强度钢(QP钢)冲压过程中因回弹严重、回弹预测困难而导致的修模时间长、修模成本高等问题,采用了Swift各向同性硬化模型以及NSK模型、Y-U模型和Chaboche模型等先进的硬化模型对QP980钢的冲压回弹进行了预测.用含有上述4种模型的LS-DYNA软件进行预测,并将结果与实际结果比较分析,发现Y-U模型能较好地预测QP钢冲压回弹.由此可以有效地辅助模具设计,减少修模次数,降低修模成本.
中图分类号:
晏佳伟,胡启,王振振,陈军. 不同硬化模型对第3代超高强度钢板冲压回弹预测的比较[J]. 上海交通大学学报, 2017, 51(11): 1334-1339.
YAN Jiawei,HU Qi,WANG Zhenzhen,CHEN Jun. A Comparison Study of Different Hardening Models in Springback Prediction for Stamping of the Third Generation Ultra High Strength Steel[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1334-1339.
[1]李激光, 张金栋, 黄海亮, 等. 高强汽车用钢的研究现状及发展趋势[J]. 材料导报, 2012(s1): 397-401. LI Jiguang, ZHANG Jindong, HUANG Hailiang, et al. Research status and development trend of high strength steel for automotive use[J]. Materials Review, 2012(s1): 397-401. [2]康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014, 49(12): 1-7. KANG Yonglin, ZHU Guoming. Development trend of China’s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel, 2014, 49(12): 1-7. [3]马鸣图, 易红亮. 高强度钢在汽车制造中的应用[J]. 热处理, 2011, 26(6): 9-20. MA Mingtu, YI Hongliang. Application of high strength steel to manufacturing auto[J]. Heat Treatment, 2011, 26(6): 9-20. [4]李扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25(13): 101-104. LI Yang, LIU Hanwu, DU Yunhui, et al. Applications and developments of AHSS in automobile industry[J]. Materials Review, 2011, 25(13): 101-104. [5]刁可山, 蒋浩民, 陈新平.基于成形特性的宝钢QP980试验研究及典型应用[J].锻压技术, 2012, 37(6): 113-115. DIAO Keshan, JIANG Haomin, CHEN Xinping. Research and typical application of QP980 steel produced by BaoSteel based on formability[J]. Forging & Stamping Technology, 2012, 37(6): 113-115. [6]HAO Q, WANG Y, JIA X, et al. Dynamic compression behavior and microstructure of a novel low-carbon quenching-partitioning-tempering steel[J]. Acta Metallurgica Sinica, 2014, 27(3): 444-451. [7]TAN Z L, WANG K K, GAO G H, et al. Mechanical properties of steels treated by Q-P-T process incorporating carbide-free-bainite/martensite multiphase microstructure[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 191-196. [8]WAGONER R H, LIM H, LEE M G. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20. [9]张璐. 高强钢回弹预测中材料模型的适用性研究及回弹补偿的自动实现[D].上海: 上海交通大学材料科学与工程学院, 2012. [10]ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effects[R]. CEGB Report, RD/B/N/731, Berkeley Nuclear Laboratories, Berkley UK, 1966. [11]CHABOCHE J L,ROUSSELIER G. On the plastic and viscoplastic constitutive equations, Part I and Part II[J]. Journal of Pressure Vessel Technology, 1983, 105(2): 4719-4754. [12]ZANG S L, GUO C, THUILLIER S, et al. A model of one-surface cyclic plasticity and its application to springback prediction[J]. International Journal of Mechanical Sciences, 2011, 53(6): 425-435. [13]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686. [14]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity and its application to springback simulation[J]. International Journal of Mechanical Sciences, 2003, 45(10): 1687-1702. [15]SUN L, WAGONER R H. Complex unloading behavior: Nature of the deformation and its consistent constitutive representation[J]. International Journal of Plasticity, 2011, 27(7): 1126-1144. [16]LEE J, LEE J Y, BARLAT F, et al. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels[J]. International Journal of Plasticity, 2013, 45(2): 140-159. [17]XIAO Y Z, CHEN J, CAO J. A generalized thermodynamic approach for modeling nonlinear hardening behaviors[J]. International Journal of Plasticity, 2012, 38(6): 102-122. [18]XIAO Y Z, CHEN J, ZHU X, et al. Modified maximum mechanical dissipation principle for rate-independent metal plasticity[J]. Journal of Applied Mechanics, 2013, 80(6): 061020. [19]肖煜中.金属宏观本构能量原理研究及其在板料冲压成形数值模拟中的应用[D].上海: 上海交通大学材料科学与工程学院, 2013. [20]Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual, Vol. I, II, and III, R8.0[M]. Livermore: Livermore Software Technology Corporation (LSTC), 2015. [21]刘罡, 林忠钦, 张卫刚.薄板成形仿真动力显式算法的虚拟凸模速度分析[J]. 上海交通大学学报, 2000, 34(10): 1406-1409. LIU Gang, LIN Zhongqin, ZHANG Weigang. Study on virtual punch velocity in simulation of sheet metal forming by explicit method[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1406-1409. |
[1] | 刘若凡, 于忠奇, 赵亦希, EVSYUKOV S A. 法兰约束条件下铝合金杯形件的旋压成形性能[J]. 上海交通大学学报, 2019, 53(1): 105-110. |
[2] | 阎昱,王海波,赵溦. 与应变速率相关的DP980高强度钢板辊弯成形的本构模型建立[J]. 上海交通大学学报(自然版), 2015, 49(01): 7-11. |
[3] | 岳懂,孙利,于忠奇. 基于双相钢板DP780弯曲试验的模具材料磨损性能[J]. 上海交通大学学报(自然版), 2014, 48(05): 594-599. |
[4] | 高晶1,刘克素2,于忠奇1,林忠钦1. 双相钢板成形界面压力数值仿真及对板料表面损伤影响[J]. 上海交通大学学报(自然版), 2013, 47(05): 770-774. |
[5] | 李雪龙,于忠奇,赵亦希,EVSYUKOV S A. 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019, 53(11): 1375-1380. |
[6] | 王永贵,孙大为,蔡艳,朱俊杰,吴毅雄. CO2激光焊接等离子体图像的三维重建[J]. 上海交通大学学报(自然版), 2014, 48(05): 600-604. |
[7] | 顾新建,于忠奇,宋洋. 工艺参数对高强度钢冷冲压界面温度影响分析[J]. 上海交通大学学报, 2017, 51(4): 426-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||