上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (10): 1260-1267.doi: 10.16183/j.cnki.jsjtu.2017.10.016
罗华毅,王景成,杨丽雯,李肖城
出版日期:
2017-10-31
发布日期:
2017-10-31
基金资助:
LUO Huayi,WANG Jingcheng,YANG Liwen,LI Xiaocheng
Online:
2017-10-31
Published:
2017-10-31
Supported by:
摘要: 以上海市青草沙原水智能调度管理系统为背景,采用基于改进粒子群的最小二乘支持向量机为原水需水量预测的方法,得到了较为准确的预测效果.通过对需水量数据进行特征分析,发现在节假日需水量预测与实际供水量有较大误差.建立基于时差系数的小时级与天级原水需水量预测模型,用以改善和优化原天级预测模型.最后,结合水厂的实际运行情况,将优化改善后的预测模型应用于水厂,为其提供更为精确的需水量预测并取得较好结果.
中图分类号:
罗华毅,王景成,杨丽雯,李肖城. 基于时差系数的城市原水需水量预测应用[J]. 上海交通大学学报(自然版), 2017, 51(10): 1260-1267.
LUO Huayi,WANG Jingcheng,YANG Liwen,LI Xiaocheng. Research and Application of Urban Water Demand Forecasting
Based on Time Difference Coefficient[J]. Journal of Shanghai Jiaotong University, 2017, 51(10): 1260-1267.
[1]上海市水务局, 上海市统计局. 上海市第一次水利普查暨第二次水资源普查公报[EB/OL], (201388) [2014112].http:∥shzw.eastday.com/shzw/G/20130808/u1ai111884.html. [2]HERRERA M, TORGO L, IZQUIERDO J, et al. Predictive models for forecasting hourly urban water demand[J]. Journal of Hydrology, 2010, 387(1): 141150. [3]TIWARI M K, ADAMOWSKI J. Urban water demand forecasting and uncertainty assessment usingensemble waveletbootstrapneural network models[J]. Water Resources Research, 2013, 49(10): 64866507. [4]王春超, 王丽萍, 曹云慧, 等. 改进多变量灰色模型在城市用水量预测中的应用[J]. 水电能源科学, 2013, 31(2): 2729. WANG Chunchao, WANG Liping, CAO Yunhui, et al. Application of improved multivariable grey model in urban water consumption prediction[J]. Water Resources and Power, 2013, 31(2): 2729. [5]JAIN A, VARSHNEY A K, JOSHI U C. Shortterm water demand forecast modelling at IIT Kanpur using artificial neural networks[J]. Water Resources Management, 2001, 15(5): 299321. [6]岑健, 危阜胜, 张多宏, 等. 最小二乘支持向量机用于水量预测[J]. 计算机仿真, 2009, 26(7): 212215. CEN Jian, WEI Fusheng, ZHANG Duohong, et al. Least squares support vector machines for water quantity prediction[J]. Computer Simulation, 2009, 26(7): 212215. [7]岳琳, 张宏伟, 王亮. 粒子群优化算法在城市需水量预测中的应用[J].天津大学学报, 2007, 40(6): 742746. YUE Lin, ZHANG Hongwei, WANG Liang. Application of particle swarm optimization in prediction of urban water demand[J]. Journal of Tianjin University, 2007, 40(6): 742746. [8]戢钢, 王景成, 葛阳, 等. 城市小时级需水量的改进型引力搜索算法最小二乘支持向量机模型预测[J]. 控制理论与应用, 2014, 31(10): 13771382. JI Gang, WANG Jingcheng, GE Yang, et al. Gravitaional search algorithmleast squares support vector machine model forecasting on hourly urban water demand[J]. Control Theory & Applications, 2014, 31(10): 13771382. [9]PALMER R N, HOLMES K J. Operational guidance during droughts: Expert system approach[J]. Journal of Water Resources Planning and Management, 1988, 114(6): 647666. [10]ZHOU S L, MCMABON T A, WALTON A, et al. Forecasting daily urban water demand: A case study of Melbourne[J]. Journal of Hydrology, 2000, 236(3): 153164. [11]DING B, HUANG B. Constrained robust model predictive control for timedelay systems with polytopic description[J]. International Journal of Control, 2007, 80(4): 509522. [12]任崇光, 高俊芳, 张黛华. 时间序列分析在水量预测中的应用[J]. 预测, 1985(S1): 7784. REN Chongguang, GAO Junfang, ZHANG Daihua. Application of time series analysis in water quantity forecast[J]. Forecasting, 1985(S1): 7784. [13]郑毅. 时间序列数据分类、检索方法及应用研究[D]. 合肥:中国科学技术大学研究生院, 2015. [14]吕谋, 赵洪宾. 城市日用水量预测的实用动态模型 [J]. 哈尔滨建筑大学学报, 1998, 31(3): 3944. L Mou, ZHAO Hongbin. A practical dynamic model for forecasting urban daily water consumption [J]. Journal of Harbin University of Civil Engineering and Architecture, 1998, 31(3): 3944. [15]SHVARTSER L, SHAMIR U, FELDMAN M. Forecasting hourly water demands by pattern recognition approach[J]. Journal of Water Resources Planning and Management, 1993, 119(6): 611627. |
[1] | 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138. |
[2] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[3] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[4] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[5] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[6] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[12] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[13] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[14] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[15] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||