上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (06): 830-836.

• 自动化技术、计算机技术 • 上一篇    下一篇

k近邻补值方法在工业过程故障诊断中的应用

李元1,吴杰1,王国柱2   

  1. (1.沈阳化工大学 信息工程学院, 沈阳 110142;2.东北大学 信息科学与工程学院, 沈阳 110819)
  • 收稿日期:2014-12-02 出版日期:2015-06-29 发布日期:2015-06-29
  • 基金资助:

    国家自然科学基金重点项目(61034006),国家自然科学基金项目(61174119,60774070)

k-Nearest Neighbor Imputation Method and Its Application in Fault Diagnosis of Industrial Process

LI Yuan1,WU Jie1,WANG Guozhu2   

  1. (1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; 2. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
  • Received:2014-12-02 Online:2015-06-29 Published:2015-06-29

摘要:

摘要:  针对贡献图分析方法在故障分离方面存在拖尾效应以及不能准确定位故障变量的问题,提出一种将k近邻(kNearest Neighbor, kNN)补值与传统贡献图相结合的故障定位方法.首先利用主成分分析建模并求取综合控制指标;然后将kNN方法与综合控制指标相结合初步提取故障变量;最终用贡献图从初步提取的故障变量中确定故障根源,该方法有效地避免了正常变量的贡献值对最终诊断结果的影响.本文运用数值算例和TE过程进行仿真,并将该方法与基于重构的贡献方法比较,验证了算法的准确性和有效性.

关键词:  , k最近邻, 重构贡献, 贡献图,  , 故障诊断

Abstract:

Abstract: Aimed at  the smearing effect in contribution plot method and the falt that fault variables cannot be located, this paper proposed a kNN imputation method for fault diagnosis, combining k-nearest neighbor and the contribution plot algorithm. First, PCA was adopted to build an evaluation model and calculate the combined index. Secondly, knearest neighbor imputation method and the control index were combined to extract preliminary faulty variables. Finally, the contribution plots were employed to find the fundamental faulty variables from the preliminary faults. The proposed method can avoid the influence of contribution values of normal variables effectively. A numerical example and Tennessee Eastman (TE) process were given to verify the effectiveness and accuracy of the proposed method, compared with the reconstruction-based method.

Key words:  k-nearest neighbor(kNN), reconstruction-based contribution(RBC), contribution plot, fault diagnosis

中图分类号: