上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (04): 457-463.
王展智,熊鹰,黄政,王睿
收稿日期:
2014-05-18
出版日期:
2015-04-28
发布日期:
2015-04-28
基金资助:
国家自然科学基金资助项目(51479207;51179198),工信部高技术船舶科研项目(工信部联装[2012]534号)
WANG Zhanzhi,XIONG Ying,HUANG Zheng,WANG Rui
Received:
2014-05-18
Online:
2015-04-28
Published:
2015-04-28
摘要:
摘要: 以DTMB5415为研究对象,忽略自由液面效应,采用RANS(Reynolds Averaged NavierStokes)方法结合SST(ShearStress Transport) kω模型计算了多种尺度(涵盖实尺度)的船舶黏性流场,详细分析了该船轴向伴流场的尺度效应作用.研究发现:桨盘面平均轴向伴流分数的倒数与雷诺数的对数近似线性关系;对于双桨方艉舰船的裸船体,桨盘面的伴流峰只有一个,伴流峰的幅值随着雷诺数的增加而减小,同时伴流峰所对应的相位角也发生一定的偏移.在内半径区域,伴流峰的幅值达到某一临界雷诺数后,趋于恒定不变;而在中外半径区域,伴流峰的幅值随着雷诺数的增加而减小,它们之间成非线性关系,可采用3次多项式函数进行回归;各半径的平均轴向伴流分数与雷诺数的对数成近似线性关系.
中图分类号:
王展智,熊鹰,黄政,王睿. 双桨船轴向伴流场尺度效应的数值研究[J]. 上海交通大学学报(自然版), 2015, 49(04): 457-463.
WANG Zhanzhi,XIONG Ying,HUANG Zheng,WANG Rui. Numerical Study on Scale Effect of Axial Wake of Twin Screw Ship[J]. Journal of Shanghai Jiaotong University, 2015, 49(04): 457-463.
[1]盛振邦,刘应中.船舶原理[M].上海:上海交通大学出版社,2004:4142.[2]The Specialist Committee on Scaling of Wake Field. Final report and recommendations to the 26rd ITTC[C]// Proceedings of 26rd ITTC. Rio de Janeiro, Brazil: ITTC, 2011:379417.[3]Sasajima H, Tanaka I. On the estimation of wakes of ships[C]// Proceedings of 11rd ITTC. Tokyo, Japan: ITTC, 1966:140144.[4]Hoekstra H. Prediction of full scale wake characteristics based on model wake survey[J]. International Shipbuilding Progress, 1975, 22(5): 204219.[5]Kaneko T, Ohmori T, Ochi F.The effect of turbulence models on the numerical simulation of flow around a fullscale ship[J].Journal of the Japan Society of Naval Architects and Ocean Engineers, 2008(6):125128.[6]Wyatt D, Fu T, Taylor G, et al. A comparison of fullscale experimental masurements and computational predictions of the transomstern wave of the R/V athena I[DB/CD]. Seoul:SNAME,2008.[7]Huang Z, Yamaguchi H, Kawamura T, et al. Numerical prediction of fullscale Hull Resistance [J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2010(11):257260.[8]Bhushan S, Xing T, Carrica P, et al.Model and fullscale URANS simulation of athena resistance, powering, seakeeping, and 5415 maneuvering[J].Journal of Ship Research, 2009, 53(4):179198.[9]付慧萍,杨晨俊.雷诺数对船舶阻力和伴流场的影响[J] .上海交通大学学报,2009,43(10):15551563.FU Huiping,YANG Chenjun.The effect of Reynolds number on resistance and wake of ship[J]. Journal of Shanghai Jiaotong University,2009,43(10):15551563.[10]Choi J E, Min K S, Kim J H, et al. Resistance and propulsion characteristics of various commercial ships based on CFD results[J].Ocean Engineering, 2010, 37(7):549566.[11]Choi J E, Kim J H, Lee H G, et al.Computational prediction of shipspeed performance [J]. Journal of Marine Science and Technology, 2009, 14(3):322333.[12]Eca L, Hoekstra M. On the numerical accuracy of the prediction of resistance coefficients in ship stern flow calculations [J]. Journal of Marine Science and Technology, 2009, 14(1): 218.[13]Min K S, Kang S H. Study on the form factor and fullscale ship resistance prediction method[J]. Journal of Marine Science and Technology, 2010, 15(2): 108118.[14]Castro A M, Carrica P M, Stern F. Full scale selfpropulsion computations using discretized propeller for the KRISO container ship KCS[J]. Computers & Fluids, 2011, 51(1): 3547.[15]Olivieri A, Pistani F, Avanaini A, et al. Towing tank experiments of resistance, sinkage and trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model[R]. Iowa: The University of Iowa, 2001. |
[1] | 赵忠良, 李浩, 赖江, 杨海泳, 王晓冰, 李玉平. 导弹模型直气复合气动特性研究[J]. 空天防御, 2022, 5(3): 1-9. |
[2] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[3] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[4] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[5] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[6] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[7] | 程晨, 王晓亮. 考虑蒙皮透射率的飞艇热力学模型及其热特性[J]. 上海交通大学学报, 2021, 55(7): 868-877. |
[8] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[9] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[10] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[11] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[12] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[13] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[14] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[15] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||